983 resultados para therapeutic monitoring
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
Background Prevention of foot ulcers in patients with diabetes is extremely important to help reduce the enormous burden of foot ulceration on both patient and health resources. A comprehensive analysis of reported interventions is not currently available, but is needed to better inform caregivers about effective prevention. The aim of this systematic review is to investigate the effectiveness of interventions to prevent first and recurrent foot ulcers in persons with diabetes who are at risk for ulceration. Methods The available medical scientific literature in PubMed, EMBASE, CINAHL and the Cochrane database was searched for original research studies on preventative interventions. Both controlled and non-controlled studies were selected. Data from controlled studies were assessed for methodological quality by two independent reviewers. Results From the identified records, a total of 30 controlled studies (of which 19 RCTs) and another 44 non-controlled studies were assessed and described. Few controlled studies, of generally low to moderate quality, were identified on the prevention of a first foot ulcer. For the prevention of recurrent plantar foot ulcers, multiple RCTs with low risk of bias show the benefit for the use of daily foot skin temperature measurements and consequent preventative actions, as well as for therapeutic footwear that demonstrates to relieve plantar pressure and that is worn by the patient. To prevent recurrence, some evidence exists for integrated foot care when it includes a combination of professional foot treatment, therapeutic footwear and patient education; for just a single session of patient education, no evidence exists. Surgical interventions can be effective in selected patients, but the evidence base is small. Conclusion The evidence base to support the use of specific self-management and footwear interventions for the prevention of recurrent plantar foot ulcers is quite strong, but is small for the use of other, sometimes widely applied, interventions and is practically nonexistent for the prevention of a first foot ulcer and non-plantar foot ulcer.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%.
Resumo:
Symposium co-ordinated by The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) Purpose Global monitoring of the price and affordability of foods, meals and diets is urgently needed. There are major methodological challenges in developing robust, cost-effective, standardized, and policy relevant tools, pertinent to nutrition, obesity, and diet-related non-communicable diseases and their inequalities. There is increasing pressure to take into account environmental sustainability. Changes in price differentials and affordability need to be comparable between and within countries and over time. Robust tools could provide baseline data for monitoring and evaluating structural, economic and social policies at the country/regional and household levels. INFORMAS offers one framework for consideration.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
This thesis increased the researchers understanding of the relationship between operations and maintenance in underground longwall coal mines, using data from a Queensland underground coal mine. The thesis explores various relationships between recorded variables. Issues with human recorded data was uncovered, and results emphasised the significance of variables associated with conveyor operation to explain production.
Resumo:
We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics. © 2005 Cancer Research UK.
Resumo:
Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.