963 resultados para tense and aspect
Resumo:
An experimental study for transient temperature response of low aspect ratio packed beds at high Reynolds numbers for a free stream with varying inlet temperature is presented. The packed bed is used as a compact heat exchanger along with a solid propellant gas-generator, to generate room temperature gases for use in applications such as control actuation and air bottle pressurization. Packed beds of lengths similar to 200 mm and 300 mm were characterized for packing diameter based Reynolds numbers, Re-d ranging from 0.6 x 10(4) to 8.5 x 10(4). The solid packing used in the bed consisted of circle divide 9.5 mm and circle divide 5 mm steel spheres with suitable arrangements to eliminate flow entrance and exit effects. The ratios of packed bed diameter to packing diameter for 9.5 mm and 5 mm sphere packing were similar to 9.5 and 18 respectively, with the average packed bed porosities around 0.4. Gas temperatures were measured at the entry, exit and at three axial locations along centre-line in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. An average Nusselt number correlation of the form Nu(d) = 3.91Re(d)(05) for Re-d range of 10(4) is proposed. For engineering applications of packed beds such as pebble bed heaters, thermal storage systems, and compact heat exchangers a simple procedure is suggested for calculating unsteady gas temperature at packed bed exit for packing Biot number Bi-d < 0.1. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
GPUs have been used for parallel execution of DOALL loops. However, loops with indirect array references can potentially cause cross iteration dependences which are hard to detect using existing compilation techniques. Applications with such loops cannot easily use the GPU and hence do not benefit from the tremendous compute capabilities of GPUs. In this paper, we present an algorithm to compute at runtime the cross iteration dependences in such loops. The algorithm uses both the CPU and the GPU to compute the dependences. Specifically, it effectively uses the compute capabilities of the GPU to quickly collect the memory accesses performed by the iterations by executing the slice functions generated for the indirect array accesses. Using the dependence information, the loop iterations are levelized such that each level contains independent iterations which can be executed in parallel. Another interesting aspect of the proposed solution is that it pipelines the dependence computation of the future level with the actual computation of the current level to effectively utilize the resources available in the GPU. We use NVIDIA Tesla C2070 to evaluate our implementation using benchmarks from Polybench suite and some synthetic benchmarks. Our experiments show that the proposed technique can achieve an average speedup of 6.4x on loops with a reasonable number of cross iteration dependences.
Resumo:
The emergence of low temperature glassy phase in widely known itinerant ferromagnet SrRuO3 is remotely understood. In order to understand this aspect, we have undertaken a detailed temperature dependent (5-250 K) neutron diffraction study. We observe a freezing of the octahedral tilt near the ferromagnetic transition and an unusual deviation in the octahedral tilt near the onset of low temperature spin glass like phase. A reduction of the ordered magnetic moment and a decline in the total integrated magnetic intensity is observed around the temperature where the glassy behaviour starts to appear. The magnetotransport study also reveals the possibility for an additional magnetic ordering by demonstrating a peak in magnetoresistance at the low temperature side as well. The neutron diffraction study presented here provides useful information to understand the observed unusual low temperature magnetic phenomena in SrRuO3.
Resumo:
The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.
Resumo:
Given the significant gains that relay-based cooperation promises, the practical problems of acquisition of channel state information (CSI) and the characterization and optimization of performance with imperfect CSI are receiving increasing attention. We develop novel and accurate expressions for the symbol error probability (SEP) for fixed-gain amplify-and-forward relaying when the destination acquires CSI using the time-efficient cascaded channel estimation (CCE) protocol. The CCE protocol saves time by making the destination directly estimate the product of the source-relay and relay-destination channel gains. For a single relay system, we first develop a novel SEP expression and a tight SEP upper bound. We then similarly analyze an opportunistic multi-relay system, in which both selection and coherent demodulation use imperfect estimates. A distinctive aspect of our approach is the use of as few simplifying approximations as possible, which results in new results that are accurate at signal-to-noise-ratios as low as 1 dB for single and multi-relay systems. Using insights gleaned from an asymptotic analysis, we also present a simple, closed-form, nearly-optimal solution for allocation of energy between pilot and data symbols at the source and relay(s).
Resumo:
We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.
Resumo:
This article reports the intermittent pulse electric field stimulus mediated in vitro cellular response of L929 mouse fibroblast/SaOS2 osteoblast-like cells on austenitic steel substrates in reference to the field strength dependent behavior. The cellular density and morphometric analyses revealed that the optimal electric (E) fields for the maximum cell density of adhered L929 (similar to 270 % to that of untreated sample) and SaOS2 (similar to 280 % to that of untreated sample) cells are 1 V (0.33 V/cm) and 2 V (0.67 V/cm), respectively. The trend in aspect ratio of elongated SaOS2 cells did not indicate any significant difference among the untreated and treated (up to 3.33 V/cm) cells. The average cell and nucleus areas (for SaOS2 cells) were increased with an increase in the applied voltage up to 8 V (2.67 V/cm) and reduced thereafter. However, the ratio of nucleus to total cell area was increased significantly on the application of higher voltages (2-10 V), indicating the possible influence of E-field on cell growth. Further, the cell density results were compared with earlier results obtained with sintered Hydroxyapatite (HA) and HA-BaTiO3 composites and such comparison revealed that the enhanced cell density on steel sample occurs upon application of much lower field strength and stimulation time. This indicates the possible role of substrate conductivity towards cell growth in pulsed E-field mediated culture conditions.
Resumo:
Seasonal studies were carried out from 21 stations, comprising of three zones, of Cochin Estuary, to assess the organic matter quality and trophic status. The hydographical parameters showed significant seasonal variations and nutrients and chlorophylls were generally higher during the monsoon season. However, chemical contamination along with the seasonal limitations of light and nitrogen imposed restrictions on the primary production and as a result, mesotrophic conditions generally prevailed in the water column. The nutrient stoichometries and delta C-13 values of surficial sediments indicated significant allochthonous contribution of organic matter. Irrespective of the higher content of total organic matter, the labile organic matter was very low. Dominance of carbohydrates over lipids and proteins indicated the lower nutritive aspect of the organic matter, and their aged and refractory nature. This, along with higher amount of phytodetritus and the low algal contribution to the biopolymeric carbon corroborated the dominance of allochthonous organic matter and the heterotrophic nature. The spatial and seasonal variations of labile organic components could effectively substantiate the observed shift in the productivity pattern. An alternative ratio, lipids to tannins and lignins, was proposed to ascertain the relative contribution of allochthonous organic matter in the estuary. This study confirmed the efficiency of an integrated biogeochemical approach to establish zones with distinct benthic trophic status associated with different degrees of natural and anthropogenic input. Nevertheless, our results also suggest that the biochemical composition alone could lead to erroneous conclusions in the case of regions that receive enormous amounts of anthropogenic inputs.
Resumo:
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Experimental study of a small partial admission axial turbine with low aspect ratio blade has been done. Tests were also performed with full admission stator replacing the partial one for the same rotor to assess the losses occurring due to partial admission. Further tests were conducted with stator admission area split into two and three sectors to study the effects of multiple admission sectors. The method of Ainley and Mathieson with suitable correction for aspect ratio in secondary losses, as proposed by Kacker and Okapuu, gives a good estimate of the efficiency. Estimates of partial admission losses are made and compared with experimentally observed values. The Suter and Traupel correlations for partial admission losses yielded reasonably accurate estimates of efficiency even for small turbines though limited to the region of design u/c(is). Stenning's original concept of expansion losses in a single sector is extended to include multiple sectors of opening. The computed efficiency debit due to each additional sector opened is compared with test values. The agreement is observed to be good. This verified Stenning's original concept of expansion losses. When the expression developed on this extended concept is modified by a correction factor, the prediction of partial admission efficiencies is nearly as good as that of Suter and Traupel. Further, performance benefits accrue if the turbine is configured with increased aspect ratio at the expense of reduced partial admission.
Resumo:
Pore-forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. The dynamics of lysis and underlying self-assembly or oligomerization pathways leading to pore formation are incompletely understood. In this manuscript the pore-forming kinetics and lysis dynamics of Cytolysin-A (ClyA) toxins on red blood cells (RBCs) are quantified and compared with experimental lysis data. Lysis experiments are carried out on a fixed mass of RBCs, under isotonic conditions in phosphate-buffered saline, for different initial toxin concentrations ranging from 2.94-14.7 nM. Kinetic models which account for monomer binding, conformation and oligomerization to form the dodecameric ClyA pore complex are developed and lysis is assumed to occur when the number of pores per RBC (n(p)) exceeds a critical number, n(pc). By analysing the model in a sublytic regime (n(p) < n(pc)) the number of pores per RBC to initiate lysis is found to lie between 392 and 768 for the sequential oligomerization mechanism and between 5300 and 6300 for the non-sequential mechanism. Rupture rates which are first order in the number of RBCs are seen to provide the best agreement with the lysis experiments. The time constants for pore formation are estimated to lie between 1 and 20 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Cell rupture takes places in 100s of seconds, and occurs predominantly with a steady number of pores ranging from 515 to 11 000 on the RBC surface for the sequential mechanism. Both the sequential irreversible and non-sequential kinetics provide similar predictions of the hemoglobin release dynamics, however the hemoglobin released as a function of the toxin concentration was accurately captured only with the sequential model. Each mechanism develops a distinct distribution of mers on the surface, providing a unique experimentally observable fingerprint to identify the underlying oligomerization pathways. Our study offers a method to quantify the extent and dynamics of lysis which is an important aspect of developing novel drug and gene delivery strategies based on pore-forming toxins.
Resumo:
We report high aspect-ratio micromechanical structures made of SU-8 polymer, which is a negative photoresist. Mask-less direct writing with 405 nm laser is used to pattern spin-cast SU-8 films of thickness of more than 600 um. As compared with X-ray lithography, which helps pattern material to give aspect ratios of 1:50 or higher, laser writing is a less expensive and more accessible alternative. In this work, aspect ratios up to 1:30 were obtained on narrow pillars and cantilever structures. Deep vertical patterning was achieved in multiple exposures of the surface with varying dosages given at periodic intervals of sufficient duration. It was found that a time lag between successive exposures at the same location helps the material recover from the transient changes that occur during exposure to the laser. This gives vertical sidewalls to the resulting structures. The time-lags and dosages were determined by conducting several trials. The micromechanical structures obtained with laser writing are compared with those obtained with traditional UV lithography as well as e-beam lithography. Laser writing gives not only high aspect ratios but also narrow gaps whereas e-beam can only give narrow gaps over very small depths. Unlike traditional UV lithography, laser writing does not need a mask. Furthermore, there is no adjustment for varying the dosage in traditional UV lithography. A drawback of this method compared to UV lithography is that the writing time increases. Some test structures as well as a compliant microgripper are fabricated.
Resumo:
Multi-walled carbon nanotube (MWCNT)-polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10(-7) to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold similar to 0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe(3)O(4) (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe(3)O(4) substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 524-532, 2014.
Resumo:
We study the statistical properties of orientation and rotation dynamics of elliptical tracer particles in two-dimensional, homogeneous, and isotropic turbulence by direct numerical simulations. We consider both the cases in which the turbulent flow is generated by forcing at large and intermediate length scales. We show that the two cases are qualitatively different. For large-scale forcing, the spatial distribution of particle orientations forms large-scale structures, which are absent for intermediate-scale forcing. The alignment with the local directions of the flow is much weaker in the latter case than in the former. For intermediate-scale forcing, the statistics of rotation rates depends weakly on the Reynolds number and on the aspect ratio of particles. In contrast with what is observed in three-dimensional turbulence, in two dimensions the mean-square rotation rate increases as the aspect ratio increases.