945 resultados para temporal and spatial renderings
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
This book brings together experts in the fields of spatial planning, landuse and infrastructure management to explore the emerging agenda of spatially-oriented integrated evaluation. It weaves together the latest theories, case studies, methods, policy and practice to examine and assess the values, impacts, benefits and the overall success in integrated land-use management. In doing so, the book clarifies the nature and roles of evaluation and puts forward guidance for future policy and practice.
Resumo:
Chemical Stratigraphy, or the study of the variation of chemical elements within sedimentary sequences, has gradually become an experienced tool in the research and correlation of global geologic events. In this paper 87Sr/ 86Sr ratios of the Triassic marine carbonates (Muschelkalk facies) of southeast Iberian Ranges, Iberian Peninsula, are presented and the representative Sr-isotopic curve constructed for the upper Ladinian interval. The studied stratigraphic succession is 102 meters thick, continuous, and well preserved. Previous paleontological data from macro and micro, ammonites, bivalves, foraminifera, conodonts and palynological assemblages, suggest a Fassanian-Longobardian age (Late Ladinian). Although diagenetic minerals are present in small amounts, the elemental data content of bulk carbonate samples, especially Sr contents, show a major variation that probably reflects palaeoenvironmental changes. The 87Sr/86Sr ratios curve shows a rise from 0.707649 near the base of the section to 0.707741 and then declines rapidly to 0.707624, with a final values rise up to 0.70787 in the upper part. The data up to meter 80 in the studied succession is broadly concurrent with 87Sr/86Sr ratios of sequences of similar age and complements these data. Moreover, the sequence stratigraphic framework and its key surfaces, which are difficult to be recognised just based in the facies analysis, are characterised by combining variations of the Ca, Mg, Mn, Sr and CaCO3 contents
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.
Resumo:
We studied the loadings of dissolved organic matter (DOM) and nutrients from the Neva River into the Eastern Gulf of Finland, as well as their distribution within the salinity gradient. Concentrations of dissolved organic carbon (DOC) ranged from 390 to 840 μM, and were related to absorption of colored DOM (CDOM) at 350 nm, aCDOM(350), ranging from 2.70 to 17.8 m-1. With increasing salinity both DOC and aCDOM decreased, whereas the slope of aCDOM spectra, SCDOM(300-700), ranging from 14.3 to 21.2 μm-1, increased with salinity.
Resumo:
We studied the loadings of dissolved organic matter (DOM) and nutrients from the Neva River into the Eastern Gulf of Finland, as well as their distribution within the salinity gradient. Concentrations of dissolved organic carbon (DOC) ranged from 390 to 840 μM, and were related to absorption of colored DOM (CDOM) at 350 nm, aCDOM(350), ranging from 2.70 to 17.8 m-1. With increasing salinity both DOC and aCDOM decreased, whereas the slope of aCDOM spectra, SCDOM(300-700), ranging from 14.3 to 21.2 μm-1, increased with salinity.
Resumo:
R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.
Resumo:
Temperature and moisture conditions are key drivers of stone weathering processes in both natural and built environments. Given their importance in the breakdown of stone, a detailed understanding of their temporal and spatial variability is central to understanding present-day weathering behaviour and for predicting how climate change may influence the nature and rates of future stone decay.
Subsurface temperature and moisture data are reported from quarry fresh Peakmoor Sandstone samples exposed during summer (June–July) and late autumn / early winter (October–December) in a mid-latitude, temperate maritime environment. These data demonstrate that the subsurface thermal response of sandstone comprises numerous short-term (minutes), low magnitude fluctuations superimposed upon larger-scale diurnal heating and cooling cycles with distinct aspect-related differences. The short-term fluctuations create conditions in the outer 5–10 mm of stone that are much more ‘energetic’ in comparison to the more subdued thermal cycling that occurs deeper within the sandstone samples.
Data show that moisture dynamics are equally complex with a near-surface region (5–10 mm) in which frequent moisture cycling takes place and this, combined with the thermal dynamism exhibited by the same region may have significant implications for the nature and rate of weathering activity. Data indicate that moisture input from rainfall, particularly when it is wind-driven, can travel deep into the stone where it can prolong the time of wetness. This most often occurs during wetter winter months when moisture input is high and evaporative loss is low but can happen at any time during the year when the hydraulic connection between near-surface and deeper regions of the stone is disrupted with subsequent loss of moisture from depth slowing as it becomes reliant on vapour diffusion alone.
These data illustrate the complexity of temperature and moisture conditions in sandstone exposed to the ‘moderate’ conditions of a temperate maritime environment. They highlight differences in thermal and moisture cycling between near-surface (5–10 mm) and deeper regions within the stone and contribute towards a better understanding of the development of structural and mineralogical heterogeneity between the stone surface and substrate.
Resumo:
We explored the temporal and spatial variations in airborne Alternaria spore quantitative and phenological features in Europe using 23 sites with annual time series between 3 and 15 years. The study covers seven countries and four of the main biogeographical regions in Europe. The observations were obtained with Hirst-type spore traps providing time series with daily records. Site locations extend from Spain in the south to Denmark in the north and from England in the West to Poland in the East. The study is therefore the largest assessment ever carried out for Europe concerning Alternaria. Aerobiological data were investigated for temporal and spatial patterns in their start and peak season dates and their spore indices. Moreover, the effects of climate were checked using meteorological data for the same period, using a crop growth model. We found that local climate, vegetation patterns and management of landscape are governing parameters for the overall spore concentration, while the annual variations caused by weather are of secondary importance but should not be neglected. The start of the Alternaria spore season varies by several months in Europe, but the peak of the season is more synchronised in central northern Europe in the middle of the summer, while many southern sites have peak dates either earlier or later than northern Europe. The use of a crop growth model to explain the start and peak of season suggests that such methods could be useful to describe Alternaria seasonality in areas with no available observations.
Resumo:
Research on intergenerational transmissions of poverty and inequality has tended to focus on material transfers. This paper refocuses attention on the intersection of material and psychosocial transfers, which reveals temporal and gendered complexities. It examines three key ideas emerging from the life course literature (relationality, intersectionality and intergenerationality) to shed light on how these complexities might be addressed. It is argued that a human wellbeing lens is potentially useful as a unifying framework to integrate these ideas as it interrogates what living well means over the life course and how it is constructed relationally.
Resumo:
Resumo:
This thesis examines the spatial and temporal variation in nitrogen dioxide (NO2) levels in Guernsey and the impacts on pre-existing asthmatics. Whilst air quality in Guernsey is generally good, the levels of NO2 exceed UK standards in several locations. The evidence indicates that people suffering from asthma have exacerbation of their symptoms if exposed to elevated levels of air pollutants including NO2, although this research has never been carried out in Guernsey before. In addition, exposure assessment of individuals is rarely carried out and research in this area is limited due to the complexity of undertaking such a study, which will include a combination of exposures in the home, the workplace and ambient exposures, which vary depending on the individual daily experience. For the first time in Guernsey, this research has examined NO2 levels in correlation with asthma patient admissions to hospital, assessment of NO2 exposures in typical homes and typical workplaces in Guernsey. The data showed a temporal correlation between NO2 levels and the number of hospital admissions and the trend from 2008-2012 was upwards. Statistical analysis of the data did not show a significant linear correlation due to the small size of the data sets. Exposure assessment of individuals showed a spatial variation in exposures in Guernsey and assessment in indoor environments showed that real-time analysis of NO2 levels needs to be undertaken if indoor micro environments for NO2 are the be assessed adequately. There was temporal and spatial variation in NO2 concentrations measured using diffusion tubes, which provide a monthly mean value, and analysers measuring NO2 concentrations in real time. The research shows that building layout and design are important factors for good air flow and ventilation and the dispersion of NO2 indoors. Environmental Health Officers have statutory responsibilities for ambient air quality, hygiene of buildings and workplace environments and this role needs to be co-ordinated with healthcare professionals to improve health outcomes for asthmatics. The outcome of the thesis was the development of a risk management framework for pre-existing asthmatics at work for use by regulators of workplaces and an information leaflet to assist in improving health outcomes for asthmatics in Guernsey.