801 resultados para technological impacts
Resumo:
Trawling, despite being heavily energy expensive, still continues to be the most energy expensive fishing method particularly so in View of the export oriented nature of the Indian seafood industry. This study therefore aims at analyzing the efficiency of trawls operation from Cochin, an important fishing center along the southwest coast of India. The analysis is made along two perspectives - economic and technological. Even though technological efficiency complement economic efficiency, in the fishing parlance, parameters like the size composition of the catch, selectivity factors, etc., will have a direct bearing on the technological qualities of the trawl, and which parameters will have a significant impact on the effective exploitation of a fishery stock. Whereas the technological analysis aims at improving the efficiency with regard to the effective utilization of fuel and fishery stocks, economic analysis ascertains the present status of the trawling operations from the commercial angle.
Resumo:
The present study entitled ‘Inter-State Variations in Manufacturing Productivity and Technological Changes in India’ covers a period of 38 years from l960 tol998-99. The study is mainly based on ASI data. The study starts with a discussion of the major facilitating factors of industrialization, namely, historical forces, public policy and infrastructure facilities. These are discussed in greater details in the context of our discussion on Perrox’s (1998) ‘growth pole’ and ‘development pole’, Hirschman’s (1958) ‘industrial centers’ and Myrdal’s ‘spread effect’ Most of the existing literature more or less agrees that the process of industrialization has not been unifonn in all Indian states. There has been a decline in inter-state industrial disparities over time. This aspect is dealt at some length in the third chapter. An important element that deserves detailed attention is the intra-regional differences in industrialisation. Regional industrialisation implies the emergence of a few focal points and industrial regions. Calcutta, Bombay and Madras were the initial focal points. Later other centers like Bangalore, Amritsar, Ahemedabad etc. emerged as nodal points in other states. All major states account for focal points. The analysis made in the third chapter shows that industrial activities generally converge to one or two focal points and industrial regions have emerged out of the focal points in almost all states. One of the general features of these complexes and regions is that they approximately accommodate 50 to 75 percent of the total industrial units and workers in the state. Such convergence is seen hands in glow with urbanization. It was further seen that intra-regional industrial disparity comes down in industrial states like Maharashtra, Gujarat and Uttar Pradesh.
Resumo:
The present study describes in detail the major technological advances in the rubber-growing industry in the lastfour decades. The major technological changes experienced in the rubber plantation industry during the period are the introduction of 'high yielding-planting materials, scientific application of fertilisers, use of pesticides, tapping during rainy season using‘rain guards, use of. yield stimulants and improved tapping methods School of Management Studies, Cochin University of Science and Technology
Resumo:
Induction of growth in the primary marine fishing industry of Kerala is a sine gua Qgn for improving the economy of the fishermen, the state's domestic product as well as earning more foreign exchange for the country. The State Administration has been trying to instil growth into the industry eversince the output of the industry showed marked sign of decline (particularly after 1975). Significantly, it has attempted to strengthen the traditional sector, (which is considered to be the crucial sector of the primary marine fishing industry of the state) by introducing intermediate technology and by revamping the organisational structure of the industry. But it appears that the production system in the primary marine fishing industry of Kerala has been severely constrained by the existing technology, organisation of production and marketing institutions. Regeneration of growth in the industry calls forth an understanding of the 'process' of growth in the industry and the need to réorganise it with new technology, and new organisations. The present study is an attempt to unraval the process of growth in the primary marine fishing industry of Kerala since 1951
Resumo:
Coastal Regulation Zone (CRZ) notification was issued by the Ministry of Environment and Forest of Government of India in February 1991 as a part of the Environmental Protection Act of 1986 to protect the coast from eroding and to preserve its natural resources. The initial notification did not distinguish the variability and diversity of various coastal states before enforcing it on the various states and Union Territories. Impact assessments were not carried out to assess its impact on socio-economic life of the coastal population. For the very same reason, it was unnoticed or rather ignored till 1994 when the Supreme Court of India made a land mark judgment on the fate of the coastal aquaculture which by then had established as an economically successful industry in many South Indian States. Coastal aquaculture in its modern form was a prohibited activity within CRZ. Lately, only various stakeholders of the coast realized the real impact of the CRZ rules on their property rights andbusiness. To overcome the initial drawbacks several amendments were made in the regulation to suit regional needs. In 1995, another great transformation took place in the State of Kerala as a part of the reorganization of the local self government institutions into a decentralized three tier system called ‘‘Panchayathi Raj System’’. In 1997, the state government also decided to transfer the power with the required budget outlay to the grass root level panchayats (villages) and municipalities to plan and implement the various projects in their localities with the full participation of the local people by constituting Grama Sabhas (Peoples’ Forum). It is called the ‘‘Peoples’ Planning Campaign’’(Peoples’ Participatory Programme—PPP for Local Level Self-Governance). The management of all the resources including the local natural resources was largely decentralized to the level of local communities and villages. Integrated, sustainable coastal zone management has become the concern of the local population. The paper assesses the socio-economic impact of the centrally enforced CRZ and the state sponsored PPP on the coastal community in Kerala and suggests measures to improve the system and living standards of the coastal people within the framework of CRZ.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
The rivers are considered as the life line of any country since they make water available for our domestic, industrial and recreational functions. The quality of river water signifies the health status and hygienic aspects of a particular region, but the quality of these life lines is continuously deteriorating due to discharge of sewage, garbage and industrial effluents into them. Thrust on water demand has increased manifolds due to the increased population, therefore tangible efforts to make the water sources free from pollution is catching attention all across the globe. This paper attempts to highlight the trends in water quality change of River Beas, right from Manali to Larji in India. This is an important river in the state of Himachal Pradesh and caters to the need of water for Manali and Kullu townships, besides other surrounding rural areas. The Manali-Larji Beas river stretch is exposed to the flow of sewage, garbage and muck resulting from various project activities, thereby making it vulnerable to pollution. In addition, the influx of thousands of tourists to these towns also contributes to the pollution load by their recreational and other tourist related activities. Pollution of this river has ultimately affected the livelihood of local population in this region. Hence, water quality monitoring was carried out for the said stretch between January, 2010 and January, 2012 at 15 various locations on quarterly basis, right from the upstream of Manali town and up to downstream of Larji dam. Temperature, color, odor, D.O. , pH, BOD, TSS, TC and FC has been the parameters that were studied. This study gives the broad idea about the characteristics of water at locations in the said river stretch, and suggestions for improving water quality and livelihood of local population in this particular domain.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.
Resumo:
Ein Drittel des weltweiten gesamten Energiebedarfs wird durch Gebäude verbraucht. Um diesen Energiebedarf teilweise zu decken, den erheblichen Energieverbrauch zu reduzieren und weiterhin andere Gebäudefunktionen beizubehalten, ist Gebäudeintegrierte Photovoltaik (BIPV) eine der am besten geeigneten Lösungen für die Gebäudenanwendung. Im Bezug auf eine Vielzahl von Gestalltungsmöglichkeiten, sind die Randbedingungen der BIPV-Anwendungen eindeutig anders im Vergleich zu Standard-PV-Anwendungen, insbesondere bezüglich der Betriebstemperatur. Bisher gab es nicht viele Informationen zu den relevanten thermischen Auswirkungen auf die entsprechenden elektrischen Eigenschaften zusammen mit thermischen und mechanischen relevanten Gebäudenfunktionen. Die meisten Hersteller übernehmen diese Eigenschaften von entsprechenden PV-Modulen und konventionellen Bauprodukten Normen, die zur ungenauen System- und Gebäudeplanungen führen. Deshalb ist die Untersuchung des thermischen Einflusses auf elektrische, thermische sowie mechanische Eigenschaften das Hauptziel der vorliegenden Arbeit. Zunächst wird das Temperatur-Model mit dem Power-Balance-Konzept erstellt. Unter Berücksichtigung der variablen Installationsmöglichkeiten und Konfigurationen des Moduls wird das Model auf Basis dynamischer und stationär Eigenschaften entwickelt. Im Hinblick auf die dynamische Simulation können der Energieertrag und Leistung zusammen mit der thermischen Gebäudesimulation in Echtzeit simuliert werden. Für stationäre Simulationen können die relevanten Gebäudefunktionen von BIPV-Modulen sowohl im Sommer als auch im Winter simuliert werden. Basierend auf unterschiedlichen thermischen und mechanischen Last-Szenarien wurde darüber hinaus das mechanische Model zusammen mit Variationen von Belastungsdauer, Montagesystem und Verkapselungsmaterialien entwickelt. Um die Temperatur- und Mechanik-Modelle zu validieren, wurden die verschiedenen Prüfeinrichtungen zusammen mit neuen Testmethoden entwickelt. Bei Verwendung der Prüfanlage „PV variable mounting system“ und „mechanical testing equipment“ werden zudem die verschiedenen Szenarien von Montagesystemen, Modul-Konfigurationen und mechanischen Belastungen emuliert. Mit der neuen Testmethode „back-bias current concept“ können zum einen die solare Einstrahlung und bestimmte Betriebstemperaturen eingestellt werden. Darüber hinaus wurden mit den eingangs erwähnten validierten Modellen das jeweilige elektrische, thermische und mechanische Verhalten auf andere Konfigurationen bewertet. Zum Abschluss wird die Anwendung von Software-Tools bei PV-Herstellern im Hinblick auf die entsprechenden Modellentwicklungen thematisiert.
Resumo:
The information and communication technologies (ICT) sectors are in a process of technological convergence. Determinant factors in this process are the liberalisation of the telecommunications markets and technological change. Many firms are engaged in a process of mergers and alliances to position themselves in this new framework. Technological and demand uncertainties are very important. Our objective in this paper is to study the economic determinants of the strategies of the firms. With this aim, we review some key technological and demand aspects. We shed some light on the strategic motivations of the firms by establishing a parallel with the evolution of the retailing sector
Resumo:
Los mapas de riesgo de inundaciones deberían mostrar las inundaciones en relación con los impactos potenciales que éstas pueden llegar a producir en personas, bienes y actividades. Por ello, es preciso añadir el concepto de vulnerabilidad al mero estudio del fenómeno físico. Así pues, los mapas de riesgo de daños por inundación son los verdaderos mapas de riesgo, ya que se elaboran, por una parte, a partir de cartografía que localiza y caracteriza el fenómeno físico de las inundaciones, y, por la otra, a partir de cartografía que localiza y caracteriza los elementos expuestos. El uso de las llamadas «nuevas tecnologías», como los SIG, la percepción remota, los sensores hidrológicos o Internet, representa un potencial de gran valor para el desarrollo de los mapas de riesgo de inundaciones, que es, hoy por hoy, un campo abierto a la investigación
Resumo:
Este trabajo pretende explorar el desarrollo del sector de la telefonía móvil desde sus inicios hasta la actualidad en Colombia, con el fin de generar escenarios de futuro. Las herramientas prospectivas MicMac (Análisis Estructural Prospectivo), Smic (Sistema de Matrices de Impactos Cruzados) y la opinión de expertos líderes del sector, son la base principal para el desarrollo del trabajo. Las entidades gubernamentales, la CTR (Comisión de Regulación de Telecomunicaciones), y los líderes de los operadores del sector de telefonía móvil, entre otros, se han concientizado que la innovación es la base del éxito en este tipo de organizaciones y por eso se ha trabajado en mejorar su regulación, logrando de esta manera que el desarrollo de los productos y servicios que se ofrecen sean cada vez mejores y perjudique en menor medida al medio ambiente y a los usuarios. Este subsector de las telecomunicaciones, es el más dinámico y con mayor potencial. Sin embargo, este también es afectado por las condiciones económicas del mercado, la inestabilidad política, las importaciones y exportaciones derivadas de los tratados comerciales, entre otros temas. El escenario apuesta facilitaría la prestación de productos con tecnología de punta y servicios con la mejor cobertura y acceso posible a precios bajos.
Resumo:
En un mundo globalizado como en el que se vive hoy, se necesitan crear acuerdos comerciales e integraciones económicas que ayuden a la expansión comercial de los países que participan en dichos tratados. Por este motivo es que Colombia durante varias décadas ha buscado relaciones comerciales con diferentes países para facilitar la comercialización de los productos colombianos con el resto del mundo. Al entrar en un acuerdo económico como el Tratado del Libre Comercio se necesita tener productos competitivos, de buena calidad y diferenciados para que puedan mantenerse en un mercado internacional. Este es el caso del sector lácteo colombiano, que se ve amenazado por la firma del TLC con la Unión europea, ya que la Unión Europea es exportador neto de leche, y esto hace que el sector este preocupado el bienestar de pequeños productores, lo que traería como consecuencia un problema en la economía del país. Por este motivo el gobierno ha tomado medidas para proteger este sector y evitar repercusiones que pongan en peligro la estabilidad del sector y que se darán ayudas a este sector para que pueda mejorar sus procesos, renovación tecnológica, mejora de la productividad y demás campos en los que están mal para poder competir con los productores europeos, la ayuda es de 30 millones de euros durante los próximos 5 años; también el gobierno ha puesto restricciones a las cantidades que los países europeos puedan comercializar en Colombia con el fin de garantizar el bienestar de este sector.