998 resultados para techniques: photometric
Resumo:
251 p.
Resumo:
Sapphire crystals, 140 mm in diameter and 90 turn in height, have been grown by temperature gradient techniques (TGT). The growth direction of the boule was fixed by means of Lane X-ray diffraction. A prominent 204 nm absorption band in TGT-Al2O3. which does not appear in single crystals grown by Czochralski method has been studied. Analysis further substantiates the F-center model of this band. Two relatively weaker bands absorbing at 232 nm and 254 nm were ascribed to F+ centers. F-type centers concentration was determined using Smakula's equation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb: YAG (Yb: Y3Al5O12) crystals have been grown by temperature-gradient techniques (TGT) and their color centers and impurity defects were investigated by means of gamma irradiations and thermal treatment. Two color centers located at 255 and 290 nm were observed in the as-grown TGT-Yb: YAG. Analysis shows that the 255 nm band may be associated with Fe3+ ions. Absorption intensity changes of the 290 nm band after gamma irradiation and thermal treatment indicate that this band may be associated with oxygen-vacancy defects. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.