954 resultados para task-determined visual strategy
Resumo:
The results of two experiments are reported that examined how performance in a simple interceptive action (hitting a moving target) was influenced by the speed of the target, the size of the intercepting effector and the distance moved to make the interception. In Experiment 1, target speed and the width of the intercepting manipulandum (bat) were varied. The hypothesis that people make briefer movements, when the temporal accuracy and precision demands of the task are high, predicts that bat width and target speed will divisively interact in their effect on movement time (MT) and that shorter MTs will be associated with a smaller temporal variable error (VE). An alternative hypothesis that people initiate movement when the rate of expansion (ROE) of the target's image reaches a specific, fixed criterion value predicts that bat width will have no effect on MT. The results supported the first hypothesis: a statistically reliable interaction of the predicted form was obtained and the temporal VE was smaller for briefer movements. In Experiment 2, distance to move and target speed were varied. MT increased in direct proportion to distance and there was a divisive interaction between distance and speed; as in Experiment 1, temporal VE was smaller for briefer movements. The pattern of results could not be explained by the strategy of initiating movement at a fixed value of the ROE or at a fixed value of any other perceptual variable potentially available for initiating movement. It is argued that the results support pre-programming of MT with movement initiated when the target's time to arrival at the interception location reaches a criterion value that is matched to the pre-programmed MT. The data supported completely open-loop control when MT was less than between 200 and 240 ms with corrective sub-movements increasingly frequent for movements of longer duration.
Resumo:
Previous research has been interpreted to suggest that the startle reflex mediates the RT facilitation observed if intense, accessory acoustic stimuli are presented coinciding with the onset of a visual imperative stimulus in a forewarned simple RT task. The present research replicated this finding as well as the facilitation of startle observed during the imperative stimulus. It failed, however, to find any relationship between the size of the blink startle reflex elicited by the accessory acoustic stimuli, which differed in intensity and rise time, and RT or RT facilitation observed on trials with accessory acoustic stimuli. This finding suggests that the RT facilitation is not mediated by the startle reflex elicited by the accessory acoustic stimuli. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The aim of this study was to examine the way Australian air traffic controllers manage their airspace. Fourteen controllers ranging from 7 to 30 years experience were sampled from the Brisbane air traffic control centre. All had previously been endorsed for en route radar sectors. Five static pictures varying in workload level (low, medium and high) were presented to participants. Controllers were asked to work through the scenarios and describe aloud how they would resolve any potential conflicts between the aircraft. Following this controllers were asked a set of probe questions based on the critical decision method, to extract further information about the way they manage their airspace. A content analysis was used to assess patterns in the way controllers scan, strategies used in conflict detection and conflict resolution and the effect of workload on strategy choice. Findings revealed that controllers use specific strategies (such as working in a left to right scan or prioritising levels) when managing their airspace. Further analyses are still planned however a model based on the processes controllers used to resolve conflicts has been developed and will be presented as a summary of the results.
Resumo:
Esta tese revisou duas linhas de pesquisa, desenvolvidas nas últimas décadas: o estudo de efeitos de estimulação subliminar priming , e de desencadeamento de reações emocionais por estímulos controlados. Este estudo tem o objetivo de combinar tais linhas para o estudo da consciência com pré-preparo afetivo: efeito de estímulos de conteúdo aversivo, subliminares e supraliminares, sobre a cognição, pela análise do desempenho em tarefa de atenção. Três tarefas experimentais foram realizadas por 35 indivíduos em laboratório de neuropsicologia: a tarefa base onde testamos à detecção de alvo visual simples, e a mesma tarefa de base, porém com estímulos distratores aversivos intercalados, de forma supraliminar ou subliminar (500 ms ou 50 ms de duração), em blocos aleatorizados entre os indivíduos. Calcularam-se índices de detectabilidade e critério de resposta, que serviram para a comparação estatística entre condições (medidas repetidas). Os resultados mostram uma mudança significativa do índice critério , indicando mudança de estratégia na presença de distratores subliminares aversivos. Concluiu-se que a tarefa subliminar fez um efeito destruidor ou devastador na tarefa supraliminar, cometendo menos falso-alarmes protegendo a tarefa supraliminar, tendo um efeito protetor . Os resultados são discutidos no contexto da relevância de influências emocionais sobre o comportamento para a Psicologia da Saúde.
Resumo:
Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.
Resumo:
This paper presents a case study of the use of a visual interactive modelling system to investigate issues involved in the management of a hospital ward. Visual Interactive Modelling systems are seen to offer the learner the opportunity to explore operational management issues from a varied perspective and to provide an interactive system in which the learner receives feedback on the consequences of their actions. However to maximise the potential learning experience for a student requires the recognition that they require task structure which helps them to understand the concepts involved. These factors can be incorporated into the visual interactive model by providing an interface customised to guide the student through the experimentation. Recent developments of VIM systems in terms of their connectivity with the programming language Visual Basic facilitates this customisation.
Resumo:
Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Aim: To investigate the correlation between tests of visual function and perceived visual ability recorded with a quality of life questionnaire for patients with uveitis. Methods: 132 patients with various types of uveitis were studied. High (monocular and binocular) and low (binocular) contrast logMAR letter acuities were recorded using a Bailey-Lovie chart. Contrast sensitivity (binocular) was determined using a Pelli-Robson chart. Vision related quality of life was assessed using the Vision Specific Quality of Life (VQOL) questionnaire. Results: VQOL declined with reduced performance on the following tests: binocular high contrast visual acuity (p = 0.0011), high contrast visual acuity of the better eye (p = 0.0012), contrast sensitivity (p = 0.005), binocular low contrast visual acuity (p = 0.0065), and high contrast visual acuity of the worse eye (p = 0.015). Stepwise multiple regression analysis revealed binocular high contrast visual acuity (p <0.01) to be the only visual function adequate to predict VQOL. The age of the patient was also significantly associated with perceived visual ability (p <0.001). Conclusions: Binocular high contrast visual acuity is a good measure of how uveitis patients perform in real life situations. Vision quality of life is worst in younger patients with poor binocular visual acuity.
Resumo:
This is a review of studies that have investigated the proposed rehabilitative benefit of tinted lenses and filters for people with low vision. Currently, eye care practitioners have to rely on marketing literature and anecdotal reports from users when making recommendations for tinted lens or filter use in low vision. Our main aim was to locate a prescribing protocol that was scientifically based and could assist low vision specialists with tinted lens prescribing decisions. We also wanted to determine if previous work had found any tinted lens/task or tinted lens/ocular condition relationships, i.e. were certain tints or filters of use for specific tasks or for specific eye conditions. Another aim was to provide a review of previous research in order to stimulate new work using modern experimental designs. Past studies of tinted lenses and low vision have assessed effects on visual acuity (VA), grating acuity, contrast sensitivity (CS), visual field, adaptation time, glare, photophobia and TV viewing. Objective and subjective outcome measures have been used. However, very little objective evidence has been provided to support anecdotal reports of improvements in visual performance. Many studies are flawed in that they lack controls for investigator bias, and placebo, learning and fatigue effects. Therefore, the use of tinted lenses in low vision remains controversial and eye care practitioners will have to continue to rely on anecdotal evidence to assist them in their prescribing decisions. Suggestions for future research, avoiding some of these experimental shortcomings, are made. © 2002 The College of Optometrists.
Resumo:
The pattern of illumination on an undulating surface can be used to infer its 3-D form (shape from shading). But the recovery of shape would be invalid if the shading actually arose from reflectance variation. When a corrugated surface is painted with an albedo texture, the variation in local mean luminance (LM) due to shading is accompanied by a similar modulation in texture amplitude (AM). This is not so for reflectance variation, nor for roughly textured surfaces. We used a haptic matching technique to show that modulations of texture amplitude play a role in the interpretation of shape from shading. Observers were shown plaid stimuli comprising LM and AM combined in-phase (LM+AM) on one oblique and in anti-phase (LM-AM) on the other. Stimuli were presented via a modified ReachIN workstation allowing the co-registration of visual and haptic stimuli. In the first experiment, observers were asked to adjust the phase of a haptic surface, which had the same orientation as the LM+AM combination, until its peak in depth aligned with the visually perceived peak. The resulting alignments were consistent with the use of a lighting-from-above prior. In the second experiment, observers were asked to adjust the amplitude of the haptic surface to match that of the visually perceived surface. Observers chose relatively large amplitude settings when the haptic surface was oriented and phase-aligned with the LM+AM cue. When the haptic surface was aligned with the LM-AM cue, amplitude settings were close to zero. Thus the LM/AM phase relation is a significant visual depth cue, and is used to discriminate between shading and reflectance variations. [Supported by the Engineering and Physical Sciences Research Council, EPSRC].
Resumo:
Various neuroimaging investigations have revealed that perception of emotional pictures is associated with greater visual cortex activity than their neutral counterparts. It has further been proposed that threat-related information is rapidly processed, suggesting that the modulation of visual cortex activity should occur at an early stage. Additional studies have demonstrated that oscillatory activity in the gamma band range (40-100 Hz) is associated with threat processing. Magnetoencephalography (MEG) was used to investigate such activity during perception of task-irrelevant, threat-related versus neutral facial expressions. Our results demonstrated a bilateral reduction in gamma band activity for expressions of threat, specifically anger, compared with neutral faces in extrastriate visual cortex (BA 18) within 50-250 ms of stimulus onset. These results suggest that gamma activity in visual cortex may play a role in affective modulation of visual processing, in particular with the perception of threat cues.
Resumo:
This study explores the relationship between attentional processing mediated by visual magnocellular (MC) processing and reading ability. Reading ability in a group of primary school children was compared to performance on a visual cued coherent motion detection task. The results showed that a brief spatial cue was more effective in drawing attention either away or towards a visual target in the group of readers ranked in the upper 25% of the sample compared to lower ranked readers. Regression analysis showed a significant relationship between attentional processing and reading when the effects of age and intellectual ability were removed. Results suggested a stronger relationship between visual attentional and non-word reading compared to irregular word reading. (C) 2004 Lippincott Williams & Wilkins, Inc.
Resumo:
Developmental learning disabilities such as dyslexia and dyscalculia have a high rate of co-occurrence in pediatric populations, suggesting that they share underlying cognitive and neurophysiological mechanisms. Dyslexia and other developmental disorders with a strong heritable component have been associated with reduced sensitivity to coherent motion stimuli, an index of visual temporal processing on a millisecond time-scale. Here we examined whether deficits in sensitivity to visual motion are evident in children who have poor mathematics skills relative to other children of the same age. We obtained psychophysical thresholds for visual coherent motion and a control task from two groups of children who differed in their performance on a test of mathematics achievement. Children with math skills in the lowest 10% in their cohort were less sensitive than age-matched controls to coherent motion, but they had statistically equivalent thresholds to controls on a coherent form control measure. Children with mathematics difficulties therefore tend to present a similar pattern of visual processing deficit to those that have been reported previously in other developmental disorders. We speculate that reduced sensitivity to temporally defined stimuli such as coherent motion represents a common processing deficit apparent across a range of commonly co-occurring developmental disorders.
Resumo:
Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20-70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data.
Resumo:
A substantial amount of evidence has been collected to propose an exclusive role for the dorsal visual pathway in the control of guided visual search mechanisms, specifically in the preattentive direction of spatial selection [Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research and Reviews, 30, 66-76; Vidyasagar, T. R. (2001). From attentional gating in macaque primary visual cortex to dyslexia in humans. Progress in Brain Research, 134, 297-312]. Moreover, it has been suggested recently that the dorsal visual pathway is specifically involved in the spatial selection and sequencing required for orthographic processing in visual word recognition. In this experiment we manipulate the demands for spatial processing in a word recognition, lexical decision task by presenting target words in a normal spatial configuration, or where the constituent letters of each word are spatially shifted relative to each other. Accurate word recognition in the Shifted-words condition should demand higher spatial encoding requirements, thereby making greater demands on the dorsal visual stream. Magnetoencephalographic (MEG) neuroimaging revealed a high frequency (35-40 Hz) right posterior parietal activation consistent with dorsal stream involvement occurring between 100 and 300 ms post-stimulus onset, and then again at 200-400 ms. Moreover, this signal was stronger in the shifted word condition, compared to the normal word condition. This result provides neurophysiological evidence that the dorsal visual stream may play an important role in visual word recognition and reading. These results further provide a plausible link between early stage theories of reading, and the magnocellular-deficit theory of dyslexia, which characterises many types of reading difficulty. © 2006 Elsevier Ltd. All rights reserved.