924 resultados para tandem mass spectrometry
Resumo:
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for (lie ionization of the compounds. [it our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed: these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second P-O-phenol bonds, eventually leading to the formation of phenol, Phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different Structure and the products detected suggest scission of either the P-O-hydrocarbon or one of the P-O-phenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.
Resumo:
An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.
Resumo:
This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R-2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL(-1), when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement-of fluoxetine in typical and trace concentration levels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.
Resumo:
A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography - mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L(-1) and 0.02 mg kg(-1), respectively.
Resumo:
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography–quadrupole mass spectrometry detection (GC–qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.
Resumo:
The analysis of volatile compounds in Funchal, Madeira, Mateus and Perry Vidal cultivars of Annona cherimola Mill. (cherimoya) was carried out by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry detection (GC–qMSD). HS-SPME technique was optimized in terms of fibre selection, extraction time, extraction temperature and sample amount to reach the best extraction efficiency. The best result was obtained with 2 g of sample, using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre for 30 min at 30 °C under constant magnetic stirring (800 rpm). After optimization of the extraction methodology, all the cherimoya samples were analysed with the best conditions that allowed to identify about 60 volatile compounds. The major compounds identified in the four cherimoya cultivars were methyl butanoate, butyl butanoate, 3-methylbutyl butanoate, 3-methylbutyl 3-methylbutanoate and 5-hydroxymethyl-2-furfural. These compounds represent 69.08 ± 5.22%, 56.56 ± 15.36%, 56.69 ± 9.28% and 71.82 ± 1.29% of the total volatiles for Funchal, Madeira, Mateus and Perry Vidal cultivars, respectively. This study showed that each cherimoya cultivars have 40 common compounds, corresponding to different chemical families, namely terpenes, esters, alcohols, fatty acids and carbonyl compounds and using PCA, the volatile composition in terms of average peak areas, provided a suitable tool to differentiate among the cherimoya cultivars.
Resumo:
An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet).
Resumo:
BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.
Resumo:
Hop(HumuluslupulusL.,Cannabaceaefamily)isprizedforitsessentialoilcontents,usedin beer production and, more recently, in biological and pharmacological applications. In this work,a methodinvolvingheadspace solid-phase microextractionand gas chromatography– mass spectrometry was developed and optimized to establish the terpenoid (monoterpenes and sesquiterpenes) metabolomic pattern of hop-essential oil derived from Saaz variety as a mean to explore this matrix as a powerful biological source for newer, more selective, biodegradable and naturally produced antimicrobial and antioxidant compounds. Different parameters affecting terpenoid metabolites extraction by headspace solid-phase microextraction were considered and optimized: type of fiber coatings, extraction temperature, extraction time, ionic strength, and sample agitation. In the optimized method, analytes were extracted for 30 min at 40 C in the sample headspace with a 50/30 m divinylbenzene/carboxen/polydimethylsiloxane coating fiber. The methodology allowed the identification of a total of 27 terpenoid metabolites, representing 92.5% of the total Saaz hop-essential oil volatile terpenoid composition. The headspace composition was dominated by monoterpenes (56.1%, 13 compounds), sesquiterpenes (34.9%, 10), oxygenated monoterpenes (1.41%, 3), and hemiterpenes (0.04%, 1) some of which can probably contribute to the hop of Saaz variety aroma. Mass spectrometry analysis revealed that the main metabolites are the monoterpene -myrcene (53.0±1.1% of the total volatile fraction), and the cyclic sesquiterpenes, -humulene (16.6 ± 0.8%), and -caryophyllene (14.7 ± 0.4%), which together represent about 80% of the total volatile fraction from the hop-essential oil. Thesefindingssuggestthatthismatrixcanbeexploredasapowerfulbiosourceofterpenoid metabolites.
Resumo:
A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.
Resumo:
Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE–LD/LVI-GC–qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9–17.8%), and low detection limits were achieved for nine volatile compounds (0.05–9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE–LD/LVI-GC–qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.
Resumo:
The establishment of potential age markers of Madeira wine is of paramount significance as it may contribute to detect frauds and to ensure the authenticity of wine. Considering the chemical groups of furans, lactones, volatile phenols, and acetals, 103 volatile compounds were tentatively identified; among these, 71 have been reported for the first time in Madeira wines. The chemical groups that could be used as potential age markers were predominantly acetals, namely, diethoxymethane, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane and 2-propyl-1,3-dioxolane, and from the other chemical groups, 5-methylfurfural and cis-oak-lactone, independently of the variety and the type of wine. GC × GC-ToFMS system offers a more useful approach to identify these compounds compared to previous studies using GC−qMS, due to the orthogonal systems, that reduce coelution, increase peak capacity and mass selectivity, contributing to the establishment of new potential Madeira wine age markers. Remarkable results were also obtained in terms of compound identification based on the organized structure of the peaks of structurally related compounds in the GC × GC peak apex plots. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This new approach provides data that can be extended to determine age markers of other types of wines.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)