938 resultados para sweet potato viruses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gnocchi is a typical Italian potato-based fresh pasta that can be either homemade or industrially manufactured. The homemade traditional product is consumed fresh on the day it is produced, whereas the industrially manufactured one is vacuum-packed in polyethylene and usually stored at refrigerated conditions. At industrial level, most kinds of gnocchi are usually produced by using some potato derivatives (i.e. flakes, dehydrated products or flour) to which soft wheat flour, salt, some emulsifiers and aromas are added. Recently, a novel type of gnocchi emerged on the Italian pasta market, since it would be as much similar as possible to the traditional homemade one. It is industrially produced from fresh potatoes as main ingredient and soft wheat flour, pasteurized liquid eggs and salt, moreover this product undergoes steam cooking and mashing industrial treatments. Neither preservatives nor emulsifiers are included in the recipe. The main aim of this work was to get inside the industrial manufacture of gnocchi, in order to improve the quality characteristics of the final product, by the study of the main steps of the production, starting from the raw and steam cooked tubers, through the semi-finished materials, such as the potato puree and the formulated dough. For this purpose the investigation of the enzymatic activity of the raw and steam cooked potatoes, the main characteristics of the puree (colour, texture and starch), the interaction among ingredients of differently formulated doughs and the basic quality aspects of the final product have been performed. Results obtained in this work indicated that steam cooking influenced the analysed enzymes (Pectin methylesterase and α- and β-amylases) in different tissues of the tuber. PME resulted still active in the cortex, it therefore may affect the texture of cooked potatoes to be used as main ingredient in the production of gnocchi. Starch degrading enzymes (α- and β-amylases) were inactivated both in the cortex and in the pith of the tuber. The study performed on the potato puree showed that, between the two analysed samples, the product which employed dual lower pressure treatments seemed to be the most suitable to the production of gnocchi, in terms of its better physicochemical and textural properties. It did not evidence aggregation phenomena responsible of hard lumps, which may occur in this kind of semi-finished product. The textural properties of gnocchi doughs were not influenced by the different formulation as expected. Among the ingredients involved in the preparation of the different samples, soft wheat flour seemed to be the most crucial in affecting the quality features of gnocchi doughs. As a consequence of the interactive effect of the ingredients on the physicochemical and textural characteristics of the different doughs, a uniform and well-defined split-up among samples was not obtained. In the comparison of different kinds of gnocchi, the optimal physicochemical and textural properties were detected in the sample made with fresh tubers. This was probably caused not only by the use of fresh steam cooked potatoes, but also by the pasteurized liquid eggs and by the absence of any kind of emulsifier, additive or preserving substance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Benyvirus includes the most important and widespread sugar beet viruses transmitted through the soil by the plasmodiophorid Polymyxa betae. In particular Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, causes an abnormal rootlet proliferation known as rhizomania. Beet soil-borne mosaic virus (BSBMV) is widely distributed in the United States and, up to date has not been reported in others countries. My PhD project aims to investigate molecular interactions between BNYVV and BSBMV and the mechanisms involved in the pathogenesis of these viruses. BNYVV full-length infectious cDNA clones were available as well as full-length cDNA clones of BSBMV RNA-1, -2, -3 and -4. Handling of these cDNA clones in order to produce in vitro infectious transcripts need sensitive and expensive steps, so I developed agroclones of BNYVV and BSBMV RNAs, as well as viral replicons allowing the expression of different proteins. Chenopodium quinoa and Nicotiana benthamiana plants have been infected with in vitro transcripts and agroclones to investigate the interaction between BNYVV and BSBMV RNA-1 and -2 and the behavior of artificial viral chimeras. Simultaneously I characterized BSBMV p14 and demonstrated that it is a suppressor of post-transcriptional gene silencing sharing common features with BNYVV p14.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of this PhD was to investigate the possibility to increase the nutritional value of confectionary products by the use of natural ingredients with healthy functions. The first part of the thesis focused on the possible substitution of the most characteristic component of confectionary products, i.e. refined sugar. Many natural whole sweetening alternatives are available, though not widely used; the use of molasses, the byproduct of sugar beet and cane production, still rich in healthy components as minerals and phytochemicals is hereby discussed; after having verified molasses effectiveness in oxidative stress counteraction on liver cultured cells, the higher antioxidant capacity of a sweet food prepared with molasses instead of refined sugar was confirmed. A second step of the project dealt with another main ingredient of various sweet products, namely wheat. Particularly, the exploitation of soft and durum wheat byproducts could be another sustainable strategy to improve the healthy value of confectionery. The isolation of oligosaccharides with bioactive functions form different fractions of the wheat milling stream was studied and the new ingredients were shown to have a high dietary fiber and antioxidants content. As valid alternative, product developers should consider the appealing and healthy addition of ancient grains flour to sweet baked goods. The possibility of substituting the modern whole durum wheat with the ancient Kamut® khorasan was considered, and the antioxidant and anti-inflammatory effects of these grains were evaluated and compared both in vitro and in vivo on rats. Finally, since high consumption of confectionery is a risk factor for obesity, a possible strategy for the counteraction of this disease was investigated. The ability of three bioactives in inhibiting adipocytes differentiation was investigated. In fact, theoretically, compounds able to influence adipogenesis could be used in the formulation of functional sweet products and contribute to prevent obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose feedstock to tackle the growing environmental, food and energy security demands. Under temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, being a relatively new crop in such areas its physiological and metabolic adaptability has to be evaluated; especially to the more frequent and severe drought spells occurring throughout the growing season and to the cold temperatures during the establishment period of the crop. The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet sorghum to drought and cold stress, both under field and controlled conditions. To meet such goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant death at young and mature stages. Young plants were able to retain high photosynthetic rate for 10 days longer than mature plants. Such response was associated to the efficient PSII down-regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an early sowing field trial were subjected to chilling temperatures under controlled growth conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential adaptability of sweet sorghum to temperate climates are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kiwifruit (genus Actinidia) is an important horticultural crop grown in the temperate regions. The four world’s largest producers are China, Italy, New Zealand and Chile. More than 50 species are recognized in the genus but the principal species in cultivation are A. deliciosa and A. chinensis. In Italy, as well as in many other countries, the kiwifruit crop has been considered to be relatively disease free and then no certification system for this species has been developed to regulate importation of propagation plant material in the European Union. During the last years a number of fungal and bacterial diseases have been recorded such as Botrytis cinerea and Pseudomonas syringae pv. actinidiae. Since 2003, several viruses and virus-like diseases have been identified and more recent studies demonstrated that Actinidia spp can be infected by a wide range of viral agents. In collaboration with the University of Auckland we have been detected thirteen different viral species on kiwifruit plants. During the three years of my PhD I worked on the characterization of Cucumber mosaic virus (CMV) and Pelargonium zonate spot virus (PZSV). The determination of causal agents has been based on host range, symptom expression in the test plant species and morphological properties of the virus particles using transmission electron microscopy (TEM) and using specific oligonucleotide primers in reverse transcription-polymerase chain reaction (RT-PCR). Both viruses induced several symptoms on kiwifruit plants. Moreover with new technologies such as high-throughput sequencing we detected additional viruses, a new member of the family Closteroviridae and a new member of the family Totiviridae. Taking together all results of my studies it is clear that, in order to minimize the risk of serious viral disease in kiwifruit, it is vital to use virus-free propagation material in order to prevent the spread of these viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complaints of sensory loss and (painful) tingling in a stocking distribution are not uncommon in primary care. These symptoms are especially troublesome while getting asleep. Characteristically, ankle tendon reflexes and vibration perception are diminished. These are the hallmarks of distal-symmetric sensory polyneuropathy (PNP), with diabetes mellitus being the most common cause in our patient population. PNP presents itself only after years of suboptimal glycemic control in diabetes type 1. In patients with type 2, symptoms of PNP can precede formal diagnosis of diabetes! In this mini-review we present an algorithm for diagnosis and management of PNP's in general practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like all organisms on the planet, honeybees (Apis mellifera) are susceptible to infection with a wide variety of viruses. These viruses may produce infections with no visible symptoms or may have devastating consequences on both the individual bee and the entire hive. Deformed Wing Virus, a member of the Iflavirus group of viruses, has an RNA genome and has had a particularly important impact on bee health. It can be spread between bees in a several ways – bees can infect each other during feeding or grooming activities, drones can pass the virus to the queen during mating and queens can lay infected eggs. The primary and most devastating way that these viruses are transmitted within and between hives involves a parasitic mite, an animal known ominously as Varroa destructor. The talk will discuss the effect that viruses have on the health and behavior of honeybees and will outline the collaborative research activities of Drs. Evans and Pizzorno over the last 7 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Direct immunofluorescence assays (DFA) are a rapid and inexpensive method for the detection of respiratory viruses and may therefore be used for surveillance. Few epidemiological studies have been published based solely on DFA and none included respiratory picornaviruses and human metapneumovirus (hMPV). We wished to evaluate the use of DFA for epidemiological studies with a long-term observation of respiratory viruses that includes both respiratory picornaviruses and hMPV. Methods Since 1998 all children hospitalized with respiratory illness at the University Hospital Bern have been screened with DFA for common respiratory viruses including adenovirus, respiratory syncytial virus (RSV), influenza A and B, and parainfluenza virus 1-3. In 2006 assays for respiratory picornaviruses and hMPV were added. Here we describe the epidemiological pattern for these respiratory viruses detected by DFA in 10'629 nasopharyngeal aspirates collected from 8'285 patients during a 12-year period (1998-2010). Results Addition of assays for respiratory picornaviruses and hMPV raised the proportion of positive DFA results from 35% to 58% (p < 0.0001). Respiratory picornaviruses were the most common viruses detected among patients ≥1 year old. The seasonal patterns and age distribution for the studied viruses agreed well with those reported in the literature. In 2010, an hMPV epidemic of unexpected size was observed. Conclusions DFA is a valid, rapid, flexible and inexpensive method. The addition of assays for respiratory picornaviruses and hMPV broadens its range of viral detection. DFA is, even in the "PCR era", a particularly adapted method for the long term surveillance of respiratory viruses in a pediatric population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.