984 resultados para spent zinc manganese dioxide batteries


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 65 of the Deep Sea Drilling Project successfully recovered basalts from four sites in the mouth of the Gulf of California, thus completing a transect begun during Leg 64 from the continental margin of Baja California to the east side of the East Pacific Rise (EPR). Sixty-three whole-rock samples from Sites 482, 483, and 485 have been analyzed by X-ray fluorescence techniques, and a further eleven samples by instrumental neutron-activation techniques, in order to assess magma variability within and between sites. Although the major element compositions and absolute hygromagmatophile (HYG) element abundances are quite variable, all of the basalts are subalkaline tholeiites exhibiting strong more-HYG element (e.g., Rb, La, Nb, Ta) depletion (LaN/YbN ~ 0.4; Nb/Zr ~ 0.02; Ba/Zr ~ 0.23; Th/Hf ~ 0.05). These ratios, together with La/Ta ratios of 20 and Th/Ta ratios of 1.25, demonstrate that the Leg 65 basalts resemble the depleted "N-type" ocean ridge basalts recovered from the Mid-Atlantic Ridge (MAR) at 22 °N and other sections of the EPR. Zr/Ti, Zr/Y, and La/Yb ratios increase with increasing fractionation. It is clear that the basalts recovered from Sites 482, 483, and 485 were all derived from a compositionally similar source and that the compositional differences observed between lithological units can be explained by varying degrees of open system fractional crystallization (magma mixing) in subridge magma chambers. The basaltic rocks recovered from Site 474 near the margin of Baja California, and Sites 477, 478, and 481 in the Guaymas Basin, all drilled during Leg 64, have consistently higher Th/Hf, La/Sm, Zr/Ti, and Zr/Y ratios and higher absolute Sr contents than the Leg 65 basalts. While some of these variations may be explained by different conditions of partial melting, it is considered more likely that the mantle source underlying the Guaymas Basin is chemically distinct from that feeding the EPR at the mouth of the Gulf. These source variations probably reflect the complex tectonic setting of the Gulf of California, the magmas formed at the inception of spreading and in the central part of the Gulf containing a minor but significant component of sub-continental (calc-alkaline) material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two genetically different types of authigenic carbonate mounds are studied: (1) from an active hydrothermal field related to serpentinite protrusions in a zone of intersection of a transform fracture zone with the Mid-Atlantic Ridge, (2) from an active field of methane seepings in the Dnieper canyon of the Black sea. General geochemical conditions, under which authigenic carbonate formation occurs within these two fields, were found. They include: presence of reduced H2S, H2, and CH4 gases at absence of free oxygen; high alkalinity of waters participating in carbonate formation; similarity of textural and structural features of authigenic aragonite, which represents the initial carbonate mineral of the mounds; paragenesis of aragonite with sulfide minerals; close relation of carbonate mounds with communities of sulfate-reducing and methane-oxidizing microorganisms. A new mechanism of formation of hydrothermal authigenic carbonates is suggested. It implies their microbial sulfate reduction over hydrogen from fluid in the subsurface mixing zone of hydrothermal solution and adjacent seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 58 successfully recovered basalt at Sites 442, 443, and 444, in the Shikoku Basin, and at Site 446 in the Daito Basin. Only at Site 442 did penetration reach unequivocal oceanic layer 2; at the other sites, only off-axis sills and flows were sampled. Petrographic observations indicate that back-arc basalts from the Shikoku Basin, with the exception of the kaersutite-bearing upper sill at Site 444, are mineralogically similar to basalts being erupted at normal mid-ocean ridges. However, the Shikoku Basin basalts are commonly very vesicular, indicating a high volatile content in the magmas. Site 446 in the Daito Basin penetrated a succession of 23 sills which include both kaersutite-bearing and kaersutite-free basalt varieties. A total of 187 samples from the four sites has been analyzed for major and trace elements using X-ray-fluorescence techniques. Chemically, the basalts from Sites 442 and 443 and the lower sill of Site 444 are subalkaline tholeiites and resemble N-type ocean-ridge basalts found along the East Pacific Rise and at 22° N on the Mid-Atlantic Ridge (MAR), although they are not quite as depleted in certain hygromagmatophile (HYG) elements. They do not show any chemical affinities with island-arc tholeiites. The basalts from Site 446 and from the upper sill at Site 444 show alkaline and tholeiitic tendencies, and are enriched in the more-HYG elements; they chemically resemble enriched or E-type basalts and their differentiates found along sections of the MAR (e.g., 45°N) and on ocean islands (e.g., Iceland and the Azores). Most of the intra-site variation may be attributed to crystal settling within individual massive flows and sills, to high-level fractional crystallization in sub-ridge magma chambers, or, where there is evidence of a long period of magmatic quiescence between units, to batch partial melting. However, the basalts from Sites 442 and 443 and from the lower sill at Site 444 cannot easily be related to those from Site 446 and the upper sill at Site 444, and it is possible that the different basalt types were derived from chemically distinct mantle sources. From comparison of the Leg 58 data with those already available for other intra-oceanic back-arc basins, it appears that the mantle sources giving rise to back-arc-basin basalts are chemically as diverse as those for mid-ocean ridges. In addition, the high vesicularity of the Shikoku Basin basalts supports previous observations that the mantle source of back-arc-basin basalts may be contaminated by a hydrous component from the adjacent subduction zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypabyssal rocks of the Omgon Range, Western Kamchatka that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5-63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. Early Paleocene age of ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. Ilmenite and titanomagnetite gabbro-dolerites were produced by multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and contamination of these melts with rhyolitic melts of different compositions. Moderate- and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. Biotite granites and granite aplites were produced by combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from Late Cretaceous throughout Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil') continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Leg 81 basalts, drilled either from the margins ("dipping reflectors" sequence: Holes 552, 553A, and 554A) or from the "continental" side (Hole 555) of the Rockall Plateau microcontinent, are strongly light rare-earth element (LREE) depleted oceanic tholeiites. The basalts from the four holes are almost similar. Most of their primary characteristics have been preserved, although they have suffered alteration by seawater. From the petrological and mineralogical points of view, they resemble deep-ocean-floor basalts but show some peculiarities (occurrence of pigeonite and ilmenite as normal components of the groundmass differentiation sequences toward ferrobasalts). Their geochemical characteristics are dominated by their extreme depletion in the most hygromagmaphile elements (Th, Ta, La, and Nb), the concentrations of which are sometimes lower than the corresponding chondritic values. Leg 81 basalts are thus clearly different from continental tholeiites (flood basalts): Possible equivalents in the Thulean Tertiary Magmatic Province include the LREE-depleted tholeiites from the Upper Basaltic Series of the Faeroe Islands and the Preshal Mhor basalt type from the British Tertiary Province.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of a lithological study of bottom sediments in the Syrian region of the Mediterranean Sea during Cruise 27 of R/V Vityaz (1993) are reported. Suspended sediment discharge of the Nile River are of the greatest importance for terrigenous sedimentation in the SE part of the Mediterranean Sea, especially in deep-sea areas. Suspended load entering from the Syrian catchment area plays an important role in formation of recent shelf and slope deposits. Supply of aerosols from Syrian and Arabian deserts was distinguished by the patchiness of surface distribution of quartz. During Late Quaternary accumulation of terrigenous material supplied from both the Syrian and the Nile drainage areas was irregular. Sedimentation was remarkably enhanced during sapropel formation 7000-9000 years BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Legs 127 and 128 of the Ocean Drilling Program cored basement samples from two sites in the Yamato Basin (Sites 794 and 797) and one site in the Japan Basin (Site 795) of the Japan Sea. These samples represent sills and lava flows erupted or shallowly intruded in a marine environment during backarc extension and spreading in the middle Miocene. In this paper, we describe the geochemical characteristics of these igneous units using 52 new instrumental neutron activation analyses (INAA), 8 new X-ray fluorescence (XRF) analyses, and previous shipboard XRF analyses. The sills intruded into soft sediment at Sites 794 and 797 were subject to extensive hydrothermal activity, estimated at <230° C under subgreenschist facies conditions, which heavily to totally altered the fine-grained unit margins and moderately to heavily altered the coarse-grained unit interiors. Diagenesis further altered the composition of these igneous bodies and lava flows at Sites 794, 795, and 797, most intensely at unit margins. Our study of two well-sampled units shows that Mg, Ca, Sr, and the large-ion lithophile elements (LILE) mobilized during alteration, and that the concentrations of Y, Yb, and Lu decreased and Ce increased in the most severely altered samples. Nevertheless, our study shows that the rare-earth elements (REE) were relatively immobile in the majority of the samples, even where secondary mixed-layer clays comprised the great majority of the rock. Fresher Yamato Basin samples are compositionally heterogenous tholeiitic basalts and dolerites. At Site 794 in the north-central portion of the basin, Units 1 to 5 (upper basement) comprise mildly light rare-earth element (LREE) enriched basalts and dolerites (chondrite-normalized La/Sm of 1.4-1.8), while the stratigraphically lower Units 6 to 9 are less enriched dolerites with (La/Sm)N of 0.7-1.3. All Site 794 samples lack Nb and Ta depletions and LILE enrichments, lacking a strong subduction-related incompatible element geochemical signature. At Site 797 in the western margin of the basin, two stratigraphically-definable unit groups also occur. The upper nine units are incompatible-element depleted tholeiitic sills and flows with strong depletions of Nb and Ta relative to normal mid-ocean ridge basalt (N-MORB). The lower twelve sills represent LREE-enriched tholeiites (normalized La/Sm ranges from 1.1 to 1.8), with distinctly higher LILE and high field-strength element (HFSE) contents. At Site 795 at the northern margin of the Japan Sea, three eruptive units consist of basaltic andesite to calc-alkaline basalt (normalized La/Sm of 1.1 to 1.5) containing moderate depletions of the HFSE relative to N-MORB. The LILE-depleted nature of these samples precludes their origin in a continental arc, indicating that they more likely erupted within a rifting oceanic arc system. The heterogenous nature of the Japan Sea rocks indicate that they were derived at each site from multiple parental magmas generated from a compositionally heterogenous mantle source. Their chemistry is intermediate in character between arc basalts, MORB, and intraplate basalts, and implies little involvement of continental crust at any point in their genesis. Their flat chondrite-normalized, medium-to-heavy rare earth patterns indicate that the primary magmas which produced them last equilibrated with and segregated from spinel lherzolite at shallow depths (<30 kbar). In strong contrast to their isotopic compositional arrays, subduction-related geochemical signatures are usually poorly defined. No basin-wide temporal or geographic systematics of rock chemistry may be confidently detailed; instead, the data show both intimate (site-specific) and widespread backarc mantle heterogeneity over a narrow (2 Ma or so) range in time, with mantle heterogeneity most closely resembling a "plum-pudding" model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments.