938 resultados para spatial and temporal variability
Resumo:
It has been suggested that the temporal control of rhythmic unimianual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are ail emergent property, whereas for tasks that involve discontinuities timing is ail explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400 ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1 Hz and 1.7 Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, delta and epsilon PKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection. Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished delta PKC translocation by 3.8-fold and increased epsilon PKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of delta PKC decreased by 60 +/- 2.7% in response to IPC, whereas the levels of epsilon PKC did not significantly change. Prolonged ischaemia induced a 48 +/- 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 +/- 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of epsilon PKC during IPC restored delta PKC levels at the mitochondria while decreasing epsilon PKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a delta PKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol. Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, delta PKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, epsilon PKC.
Resumo:
The representation of sustainability concerns in industrial forests management plans, in relation to environmental, social and economic aspects, involve a great amount of details when analyzing and understanding the interaction among these aspects to reduce possible future impacts. At the tactical and operational planning levels, methods based on generic assumptions usually provide non-realistic solutions, impairing the decision making process. This study is aimed at improving current operational harvesting planning techniques, through the development of a mixed integer goal programming model. This allows the evaluation of different scenarios, subject to environmental and supply constraints, increase of operational capacity, and the spatial consequences of dispatching harvest crews to certain distances over the evaluation period. As a result, a set of performance indicators was selected to evaluate all optimal solutions provided to different possible scenarios and combinations of these scenarios, and to compare these outcomes with the real results observed by the mill in the study case area. Results showed that it is possible to elaborate a linear programming model that adequately represents harvesting limitations, production aspects and environmental and supply constraints. The comparison involving the evaluated scenarios and the real observed results showed the advantage of using more holistic approaches and that it is possible to improve the quality of the planning recommendations using linear programming techniques.
Resumo:
By allowing the estimation of forest structural and biophysical characteristics at different temporal and spatial scales, remote sensing may contribute to our understanding and monitoring of planted forests. Here, we studied 9-year time-series of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on a network of 16 stands in fast-growing Eucalyptus plantations in Sao Paulo State, Brazil. We aimed to examine the relationships between NDVI time-series spanning entire rotations and stand structural characteristics (volume, dominant height, mean annual increment) in these simple forest ecosystems. Our second objective was to examine spatial and temporal variations of light use efficiency for wood production, by comparing time-series of Absorbed Photosynthetically Active Radiation (APAR) with inventory data. Relationships were calibrated between the NDVI and the fractions of intercepted diffuse and direct radiation, using hemispherical photographs taken on the studied stands at two seasons. APAR was calculated from the NDVI time-series using these relationships. Stem volume and dominant height were strongly correlated with summed NDVI values between planting date and inventory date. Stand productivity was correlated with mean NDVI values. APAR during the first 2 years of growth was variable between stands and was well correlated with stem wood production (r(2) = 0.78). In contrast, APAR during the following years was less variable and not significantly correlated with stem biomass increments. Production of wood per unit of absorbed light varied with stand age and with site index. In our study, a better site index was accompanied both by increased APAR during the first 2 years of growth and by higher light use efficiency for stem wood production during the whole rotation. Implications for simple process-based modelling are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.
Resumo:
The Australian-bred lucerne cultivars, Trifecta and Sequel, were found to possess useful levels of resistance to both Colletotrichum trifolii races 1 and 2. Race 2 has only been previously observed in the United States and surveys did not reveal its presence in Australia. Multilocus fingerprinting using random amplified polymorphic DNA (RAPDs) analysis revealed low diversity (<10% dissimilarity) within Australian C. trifolii collections, and between the Australian race 1 isolates and a US race 2 isolate. Studies on the inheritance of resistance to C. trifolii race 1 in individual clones from Trifecta and Sequel revealed the presence of 2 different genetic mechanisms. One inheritance was for resistance as a recessive trait, and the other indicated that resistance was dominant. The recessive system has never been previously reported, whereas in the US, 2 completely dominant and independent tetrasomic genes Anl and Ant have been reported to condition C. trifolii resistance. It was not possible to fit the observed segregations from our studies to a single-gene model. In contrast to US studies, clones of cv. Sequel exhibiting the recessive resistance reacted differently to spray and stem injection with C. trifolii inoculum, being resistant to the former and susceptible to the latter, providing additional evidence for the presence of a different genetic mechanism conditioning resistance to those previously reported in the US. As C. trifolii is one of the most serious diseases of lucerne worldwide, the future development of molecular markers closely linked to the dominant and recessive resistances identified in these studies, and the relationships between these resistances and Anl and Ans as determined by genetic mapping, appear to be useful areas of future study.
Resumo:
Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
Two small RNAs regulate the timing of Caenorhabditis elegans development(1,2). Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA(1,3,4), and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA 2. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs1,2,5,6. Here we have detected let-7 RNAs of similar to 21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila, at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
The thalassinidean shrimp Trypea australiensis (the yabby) commonly occurs on intertidal sandflats and subtidal regions of sheltered embayments and estuaries along the east coast of Australia and is harvested commercially and recreationally for use as bait by anglers. The potential for counts of burrow openings to provide a reliable indirect estimate of the abundance of yabbies was examined on intertidal sandflats on North Stradbroke Island (Queensland, Australia). The relationship between the number of burrow openings and the abundance of yabbies was generally poor and also varied significantly through time, casting doubt on previous estimates of abundance for this species based on unvalidated hole counts. Spatial and temporal variation in population density, the size at maturity and the reproductive period of the yabby were also assessed. Except for an initial peak in abundance as a result of recruitment, the density of yabbies was constant throughout the study but considerably less than that estimated from a previous study in the same area. Ovigerous females were recorded at 3 mm carapace length (CL) which is smaller than previously recorded for this species and thalassinideans in general. Small ovigerous females were found throughout the study, including the summer months, which is unusual for thalassinideans in the intertidal zone. It was hypothesised that in the intertidal zone, small female yabbies may be able to balance the metabolic demands of reproduction and respiration at higher temperatures than can larger females allowing them to reproduce in the warmer months.
Resumo:
Biogeography deals with the combined analysis of the spatial and temporal components of the evolutionary process. To this purpose, biogeographical analysis should consider two extra steps: a reciprocal illumination step, and a consilience step. Even if the traditional challenges of biogeography were successfully handled, the obtained hypothesis is not necessarily meaningful in biogeographical terms--it needs continuous test in the light of external hypotheses. For this reason, a concept analogous to Hennig`s reciprocal illumination is valuable, as well as a sort of biogeographical consilience in Whewell`s sense. Firstly, through the search for different classes of evidence, information useful to improve the hypothesis can be accessed via reciprocal illumination. Following, a more general hypothesis would arise through a consilience process, when the hypothesis explains phenomena not contemplated during its construction, as the distribution of other taxa or the existence (or absence) of fossils. This procedure aims to evaluate the robustness of biogeographical hypotheses as scientific theories. Such theories are reliable descriptions of how life changes its form both in space and time, putting historical biogeography close to Croizat`s statement of evolution as a three dimensional phenomenon.
Resumo:
There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.
Resumo:
A large number of ore deposits that formed in the Peruvian Andes during the Miocene (15-5 Ma) are related to the subduction of the Nazea plate beneath the South American plate. Here we show that the spatial and temporal distribution of these deposits correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with impingement of the aseismic ridge into the subduction zone may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments. (c) 2005 Elsevier B.V All rights reserved.