920 resultados para solitons in Bose-Einstein condensates
Resumo:
We study motion around a static Einstein and pure Lovelock black hole in higher dimensions. It is known that in higher dimensions bound orbits exist only for a pure Lovelock black hole in all even dimensions, D = 2N + 2, where N is the degree of Lovelock polynomial action. In particular, we compute periastron shift and light bending, and the latter is given by one of the transverse spatial components of the Riemann curvature tensor. We also consider the pseudo-Newtonian potentials and Kruskal coordinates.
Resumo:
Superradiance (SR), or cooperative spontaneous emission, has been predicted by R. Dicke before the invention of the laser. During the last few years one can see a renaissance of both experimental and theoretical studies of the superradiant phase transition in a variety of media, ranging from quantum dots and Bose condensates through to black holes. Until recently, despite of many years of research, SR has been considered as a phenomenon of pure scientific interest without obvious potential applications. However, recent investigations of the femtosecond SR emission generation from semiconductors have opened up some practical opportunities for the exploitation of this quantum optics phenomenon. Here we present a brief review of some features, advantages and potential applications of the SR generation from semiconductor laser structures
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
By using phi-mapping topological current theory and gauge potential decomposition, we discuss the self-dual equation and its solution in the SU(N) Dunne-Jackiw-Pi-Trugenberger model and obtain a new concrete self-dual equation with a 6 function. For the SU(3) case, we obtain a new self-duality solution and find the relationship between the soliton solution and topological number which is determined by the Hopf index and Brouwer degree of phi-mapping. In our solution, the flux of this soliton is naturally quantized.
Triterpane and sterane biomarkers in the YA13-1 condensates from Qiongdongnan Basin, South China Sea
Resumo:
Triterpanes and steranes in condensates from the YA13-1 gas field, Qiongdongnan Basin, were monitored. The YA13-1 condensates have unusual biomarker distributions dominated by terpanes and steranes derived from higher plants. Anomalously abundant 1 got-oleanane and remarkably abundant bicadinanes are present in the YA13-1 condensates, whereas the 17alpha-hopane contents are extremely low. Taraxastane and significantly abundant 17alpha-diahopanes occur in the condensates. In addition, a number of unknown C-29 and C-30 pentacyclic triterpanes including previously unreported compounds were detected in the condensates, some of which are significantly abundant. The unknown compounds may be terrestrial biomarkers. C-29 homologues are relatively predominant among the regular and rearranged steranes. The diasterane concentrations are markedly higher than those of regular steranes. The maturity of the YA13-1 condensates is relatively high, at the peak to late oil generation stage (corresponding to 0.85-1.10% Ro), based on sterane and terpane and including bicadinane maturity parameters (i.e. T/(T-1 + R) and 2T/R bicadinane ratios). The above maturity assessment result is different from that based on diamondoid maturity parameters (%Ro = 1.60-1.70) [Org. Geochem. 25 (1996) 179], which can be explained by a contribution of hydrocarbons from two sources at different depths. The YA13-1 condensates were probably generated from the Yacheng and Lingshui coal-bearing source rocks buried both in the Qiongdongnan Basin (3400-5000 m) and in the Yinggehai Basin (>5000 m). The possible contribution of lower maturity hydrocarbons from the Yacheng and Lingshui Formations (3400-4100 m) in the Qiongdongnan Basin to the YA13-1 gases and condensates should not be neglected. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Two extreme pictures of electron-phonon interactions in nanoscale conductors are compared: one in which the vibrations are treated as independent Einstein atomic oscillators, and one in which electrons are allowed to couple to the full, extended phonon modes of the conductor. It is shown that, under a broad range of conditions, the full-mode picture and the Einstein picture produce essentially the same net power at any given atom in the nanojunction. The two pictures begin to differ significantly in the limit of low lattice temperature and low applied voltages, where electron-phonon scattering is controlled by the detailed phonon energy spectrum. As an illustration of the behaviour in this limit, we study the competition between trapped vibrational modes and extended modes in shaping the inelastic current-voltage characteristics of one-dimensional atomic wires.
Resumo:
The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.
Resumo:
The voltammetry for the reduction of oxygen at a microdisk electrode is reported in six commonly used RTILs: [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)dmim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], and [N-6.2.2.2][NTf2], where [C(4)mim](+) is 1-butyl-3-methylimidazolium, [NTf2](-) is bis(trifluoromethanesulfonyl)imide, [C(4)mpyrr](+) is N-butyl-N-methylpyrrolidinium, [C(4)dmim](+) is 1-butyl-2,3-methylimidazolium, [BF4](-) is tetrafluoroborate, [PF6](-) is hexafluorophosphate, and [N-6.2.2.2](+) is n-hexyltriethylammonium at varying scan rates (50-4000 mV s(-1)) and temperatures (293-318 K). Diffusion coefficients, D, of oxygen are deduced at each temperature from potential-step chronoamperometry, and diffusional activation energies are calculated. Oxygen solubilities are also reported as a function of temperature. In the six ionic liquids, the Stokes-Einstein relationship (D proportional to eta(-1)) was found to apply only very approximately for oxygen. This is considered in relationship to the behavior of other diverse solutes in RTILs.
Resumo:
The amplitude modulation of magnetic field-aligned circularly polarized electromagnetic (CPEM) waves in a magnetized pair plasma is reexamined. The nonlinear frequency shifts include the effects of the radiation pressure driven density and compressional magnetic field perturbations as well as relativistic particle mass variations. The dynamics of the modulated CPEM wave packets is governed by a nonlinear Schrodinger equation, which has attractive and repulsive interaction potentials for fast and slow CPEM waves. The modulational stability of a constant amplitude CPEM wave is studied by deriving a nonlinear dispersion from the cubic Schrodinger equation. The fast (slow) CPEM mode is modulationally unstable (stable). Possible stationary amplitude solutions of the modulated fast (slow) CPEM mode can be represented in the form of bright and dark/gray envelope electromagnetic soliton structures. Localized envelope excitations can be associated with the microstructures in pulsar magnetospheres and in laboratory pair magnetoplasmas. (C) 2005 American Institute of Physics.
Resumo:
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrodinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the