996 resultados para soil bacteria
Resumo:
Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores-the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.
Resumo:
Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB) accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag)- that measured changes in free potentials induced by the presence of exogeneously added sulphide) and SRB concentration (enumerated by a culturing method). E (Ag) was characterized under a variety of conditions andwas found to be relatively immune to possible interference resulting from aeration of media or from the psence of iron corrosion products. The method offers a simple, rapid, and effective means of diagnosing biocorrosive processes prior to their control.
Resumo:
A Gram-negative, rod-shaped, aerobic bacterium, designated strain RP007(T), was isolated from a polycyclic aromatic hydrocarbon-contaminated soil in New Zealand. Two additional strains were recovered from a compost heap in Belgium (LMG 18808) and from the rhizosphere of maize in the Netherlands (LMG 24204). The three strains had virtually identical 16S rRNA gene sequences and whole-cell protein profiles, and they were identified as members of the genus Burkholderia, with Burkholderia phenazinium as their closest relative. Strain RP007(T) had a DNA G+C content of 63.5 mol% and could be distinguished from B. phenazinium based on a range of biochemical characteristics. Strain RP007(T) showed levels of DNA-DNA relatedness towards the type strain of B. phenazinium and those of other recognized Burkholderia species of less than 30 %. The results of 16S rRNA gene sequence analysis, DNA-DNA hybridization experiments and physiological and biochemical tests allowed the differentiation of strain RP007(T) from all recognized species of the genus Burkholderia. Strains RP007(T), LMG 18808 and LMG 24204 are therefore considered to represent a single novel species of the genus Burkholderia, for which the name Burkholderia sartisoli sp. nov. is proposed. The type strain is RP007(T) (=LMG 24000(T) =CCUG 53604(T) =ICMP 13529(T)).
Resumo:
Chlamydia-related bacteria, new members of the order Chlamydiales, are suggested to be associated with respiratory disease. We used real-time PCR to investigate the prevalence of Parachlamydia acanthamoebae, Protochlamydia spp., Rhabdochlamydia spp., Simkania negevensis and Waddlia chondrophila in samples taken from patients with suspected respiratory tract infections. Of the 531 samples analyzed, the subset of 136 samples contained 16 (11.8%) samples positive for Rhabdochlamydia spp. DNA. P. acanthamoebae, Protochlamydia spp., S. negevensis and W. chondrophila DNA were not detected among the respiratory samples investigated. These results suggest an association of Rhabdochlamydia spp. with respiratory disease.
Resumo:
Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C(10)OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
Resumo:
Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/beta)T cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
From March 1990 to December 1992, the National Institute for Quality Control of Health-INCQS Research Collection received 1476 bacterial samples isolated from human cerebrospinal fluid of patients suspect of meningitis in Rio de Janeiro, from the São Sebastião State Institute of Infectious Diseases (IEISS). Neisseria meningitidis was found in most of these materials, followed in smaller number by Haemophilus sp. and Streptococcus pneumoniae. The great majority of N. meningitidis strains was serogroup B, followed by serogroup C and a few strains of serogroup W135. More than 50 of the isolated bacterial agents came from the predominant 0-4 years age group. The majority of the strains were from patients in the region known as "Baixada Fluminense" (Low Lands). The aim of the work presented here is to obtain samples of meningitis cases in at least 70 of the State of Rio de Janeiro and develop a collaborative research between INCQS-FIOCRUZ and the IEISS, in order to set up a collection of strains for future studies. However, despite work being carried out in a rather satisfactory way, difficulties still arise and have to be overcome, to survey data.
Resumo:
Few microorganisms are commercially available for use against white grubs (larvae of Scarabaeidae). Entomopathogenic bacteria, particularly Bacillus popilliae, have been used the longest for white grub suppression. Other bacteria, namely B. thuringiensis and Serratia spp. offer promise for future control. This papes examines two genera of bacteria (Bacillus and Serratia) from the historical and current perspective. Bacillus popilliae, the firs microbial control agent registered in the United States, has a long history of use in suppressing populations of the Japanese beetle, Popillia japonica. However, lack of in vitro production and the slow and sporadic nature of its activity, severely limits its utilization. B. thuringiensis, the most widely used microbial pesticide, has not been used for scarab, control. However, strains with scarab activity have recently been discovered. Scarab larvae have been collected in the United States with signs and symptoms similar to those characteristic of amber disease (caused by Serratia entomophila) in the New Zealand grass grub, Costelytra zealandica. A total of 147 bacteria have been obtained from the digestive tracts of larvae of the Japanese beetle and masked chafers, Cyclocephala spp., as well as from larvae and soil collected in Japan and China. Seventy five of these have been identified as Serratia spp. Most (40) of the remaining bacteria are in the genus Enterobacter. A majority of the bacteria (73) and of the Serratia (38) came from P. japonica.
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
We demonstrate the use of laser-induced fluorescence confocal spectroscopy to measure analyte-stimulated enhanced green fluorescent protein (egfp) synthesis by genetically modified Escherichia coli bioreporter cells. Induction is measured in cell lysates and, since the spectroscopic focal volume is approximately the size of one bioreporter cell, also in individual live bacteria. This is, to our knowledge, the first ever proof-of-concept work utilizing instrumentation with single-molecule detection capability to monitor bioreporter response. Although we use arsenic inducible bioreporters here, the method is extensible to gfp/egfp bioreporters that are responsive to other substances.
Resumo:
Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.