963 resultados para small nuclear RNA
Resumo:
Leishmania amazonensis causes a wide spectrum of leishmaniasis. There are no vaccines or adequate treatment for leishmaniasis, therefore there is considerable interest in the identification of new targets for anti-leishmania drugs. The central role of telomere-binding proteins in cell maintenance makes these proteins potential targets for new drugs. In this work, we used a combination of purification chromatographies to screen L. amazonensis proteins for molecules capable of binding double-stranded telomeric DNA. This approach resulted in the purification of a 38 kDa polypeptide that was identified by mass spectrometry as Rbp38, a trypanosomatid protein previously shown to stabilize mitochondrial RNA and to associate with nuclear and kinetoplast DNAs. Western blotting and supershift assays confirmed the identity of the protein as LaRbp38. Competition and chromatin immunoprecipitation assays confirmed that LaRbp38 interacted with kinetoplast and nuclear DNAs in vivo and suggested that LaRbp38 may have dual cellular localization and more than one function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
While many members of the black yeasts genus Cladophialophora have been reported to cause diseases in humans, understanding of their natural niche is frequently lacking. Some species can be recovered from the natural environment by means of selective isolation techniques. The present study focuses on a Cladophialophora strain that caused an interdigital tinea nigra-like lesion in a HIV-positive Brazilian child. The fungal infection was successfully treated with oxiconazole. Similar strains had been recovered from the environment in Brazil, Uruguay and the Netherlands. The strains were characterized by sequencing the Internal Transcribed Spacer (ITS) regions and the small subunit (SSU) of the nuclear ribosomal RNA gene, as well as the elongation factor 1-alpha (EF1) gene. Since no match with any known species was found, it is described as the new species, Cladophialophora saturnica.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To estimate realistic cross sections in ultra peripheral heavy ion collisions we must remove effects of strong absorption. One method to eliminate these effects make use of a Glauber model calculation, where the nucleon-nucleon energy dependent cross sections at small impact parameter are suppressed. In another method we impose a geometrical cut on the minimal impact parameter of the nuclear collision ((b)min > R-1 + R-2, where R-i is the radius of ion 'i'). In this last case the effect of a possible nuclear radius dependence with the energy has not been considered in detail up to now. Here we introduce this effect showing that for final states with small invariant mass the effect is negligible. However when the final state has a relatively large invariant mass, e.g., an intermediate mass Higgs boson, the cross section can decrease up to 50%. (C) 2003 Published by Elsevier B.V.
Resumo:
OBJETIVO: demonstrar se ocorre crescimento pulmonar compensatório (CPC) representado pelos conteúdos de proteínas, DNA e RNA no rato adulto jovem, subnutrido, submetido à trilobectomia pulmonar. MÉTODOS: Utilizamos 137 ratos Wistar, machos, distribuídos por sorteio, em 9 grupos, submetidos a três tratamentos (controle, toracotomia, trilobectomia), sacrificados em três momentos (7, 30 e 90 dias). Na trilobectomia foram extirpados os lobos médio, acessório e caudal direitos. Variáveis estudadas: conteúdos pulmonares de proteínas, DNA e RNA. RESULTADOS: No lobo cranial e pulmão esquerdo o conteúdo protéico foi maior nos trilobectomizados. Ocorreu CPC insuficiente para suprir a perda desta variável, sendo menor nos pulmões dos trilobectomizados. O incremento nos conteúdos de DNA do lobo cranial e pulmão esquerdo dos trilobectomizados foram suficientes para compensar a perda desta variável, resultando num conteúdo de DNA dos pulmões semelhante aos controle. O conteúdo de RNA, nos trilobectomizados, foi maior no lobo cranial e pulmão esquerdo, com maior eficiência no primeiro, insuficiente para que se aproximassem aos obtidos nos demais grupos, ficando menores. CONCLUSÃO: Nos trilobectomizados ocorreu CPC, provavelmente com hiperplasia celular e pouca hipertrofia, devido a grande compensação do DNA e pequena do RNA. Esta foi a grande diferença quando comparamos este resultado ao obtido com animais nutridos, que apresentavam hipertrofia pronunciada.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.
Resumo:
Starvation is a physiologic stress and can significantly alter the structure of hepatic cells. This work aims to detect morphological changes in mice hepatocyte under starvation physiologic stress, based on silver staining technique. Fourteen 21 day old male mice (Mus musculus) were used, 5 as control, 5 submitted to 72 hours of starvation, and 4 were refed during 72 hours after 72 hours of starvation. After liver imprint, 15 nuclei per mouse and their respective nucleoli were outlined in millimetric paper and their areas were obtained. The results, in mm2, were transformed into μm2. The number of nucleoli per nuclei were also counted. After starvation, a statistically significant rise in nuclear and nucleolar areas occurred and no significant increase in the number of nucleoli was observed. The refeeding caused a partial recovery of the nuclear area, no significant change in the nucleolar area and a statistically significant increase in the number of nucleoli. Therefore, starvation can be considered as a modifier agent of the chromatinic structure, leading to an increase of the nuclear and nucleolar areas probably due to an increment of RNA and protein synthesis. The recovery of the stress (refeeding) did not presented a decrease of nucleolar area and evidenced a nucleoli fragmentation, probably to increase more the protein synthesis and/or due to its cycle during the interphase.
Resumo:
In this study we utilized both histological/histochemical tests and morphometric/statistical tests to observe developmental differences in the corpora allata in Pachycondyla striata workers and queens ants. The general structure of corpora allata was similar between workers and queens. The differences found among the volumes was not statistically significant when the probability value was set at 5%. Although the queen corpora allata volume has been observed smaller than those of the worker and the right gland volume has been smaller than those of the left one. Differences also were observed histologically, the worker corpora allata cells showed homogeneous cytoplasm and sparse nuclear chromatin in well defined nuclei. It was the reverse in the queens, in which the corpora allata cells showed some secretory cytoplasmic vesicles and nuclei with a different morphology, i. e., from extremely large with sparse chromatin to small with condensed chromatin. Employing histochemical tests verified that the corpora allata in both castes contained large amounts of RNA and protein in the cytoplasm of their cells and an absence of polysaccharides. Differences in the lipid amounts in worker's glands were found, whereas, in the queens' corpora allata lipids always occur.
Resumo:
The in-medium influence on π0 photoproduction from spin zero nuclei is carefully studied in the GeV range using a straightforward Monte Carlo analysis. The calculation takes into account the relativistic nuclear recoil for coherent mechanisms (electromagnetic and nuclear amplitudes) plus a time dependent multi-collisional intranuclear cascade approach (MCMC) to describe the transport properties of mesons produced in the surroundings of the nucleon. A detailed analysis of the meson energy spectra for the photoproduction on 12C at 5.5 GeV indicates that both the Coulomb and nuclear coherent events are associated with a small energy transfer to the nucleus (≲ 5 MeV), while the contribution of the nuclear incoherent mechanism is vanishing small within this kinematical range. The angular distributions are dominated by the Primakoff peak at extreme forward angles, with the nuclear incoherent process being the most important contribution above θπ0 ≲ 20. Such consistent Monte Carlo approach provides a suitable method to clean up nuclear backgrounds in some recent high precision experiments, such as the PrimEx experiment at the Jefferson Laboratory Facility.
Resumo:
The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells. Published by Cold Spring Harbor Laboratory Press. Copyright © 2007 The Protein Society.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.