922 resultados para shoulder motor control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on Parkinson’s disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal (NS) pathway; also, post-mortem studies have demonstrated that the noradrenergic and the serotonergic transmitter systems are also affected (Jellinger, 1999). Degeneration of these neuronal cell bodies is generally thought to start prior to the loss of dopaminergic neurons in the NS pathway and precedes the appearance of the motor symptoms that are the “hallmark” of PD. Gastrointestinal (GI) motility is often disturbed in PD, manifesting chiefly as impaired gastric emptying and constipation. These GI dysfunction symptoms may be the result of a loss in noradrenergic and serotonergic innervation. GI deficits were evaluated using an organ bath technique. Groups treated with different combinations of neurotoxins (6-OHDA alone, 6-OHDA + pCA or 6-OHDA + DSP-4) presented significant differences in gut contractility compared to control groups. Since a substantial body of literature suggests the presence of an inflammatory process in parkinsonian state (Whitton, 2007), changes in pro-inflammatory cytokines in the gut were assessed using a cytokine microarray. It has been found in this work that groups with a combined dopaminergic and noradrenergic lesion have a significant increase in both expressions of IL-13 and VEGF. IL-6 also shows a decrease in treatment groups; however this decrease did not reach statistical significance. The therapeutic value of Exendin-4 (EX-4) was evaluated. It has been previously demonstrated that EX-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is neuroprotective in rodent models of PD (Harkavyi et al., 2008). In this thesis it has been found that EX-4 was able to reverse a decrease in gut contractility obtained through intracerebral bilateral 6-OHDA injection. Although more studies are required, EX-4 could be used as a possible therapy for the GI symptoms prominent in the early stages of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP scan technique on healthy subjects. A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current intensity step. The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse,respectively, being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulusresponse curve slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adiposity, low aerobic fitness and low levels of activity are all associated with clustered cardiovascular disease risk in children and their high prevalence represents a major public health concern. The aim of this study is to investigate the relationship of objectively measured physical activity (PA) with motor skills (agility and balance), aerobic fitness and %body fat in young children. This study is a cross-sectional and longitudinal analyses using mixed linear models. Longitudinal data were adjusted for baseline outcome parameters. In all, 217 healthy preschool children (age 4-6 years, 48% boys) participated in this study. PA (accelerometers), agility (obstacle course), dynamic balance (balance beam), aerobic fitness (20-m shuttle run) and %body fat (bioelectric impedance) at baseline and 9 months later. PA was positively associated with both motor skills and aerobic fitness at baseline as well as with their longitudinal changes. Specifically, only vigorous, but not total or moderate PA, was related to changes in aerobic fitness. Higher PA was associated with less %body fat at baseline, but not with its change. Conversely, baseline motor skills, aerobic fitness or %body fat were not related to changes in PA. In young children, baseline PA was associated with improvements in motor skills and in aerobic fitness, an important determinant of cardiovascular risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 28-month-old boy was referred for acute onset of abnormal head movements. History revealed an insidious progressive regression in behaviour and communication over several months. Head and shoulder 'spasms' with alteration of consciousness and on one occasion ictal laughter were seen. The electroencephalograph (EEG) showed repeated bursts of brief generalized polyspikes and spike-wave during the 'spasms', followed by flattening, a special pattern which never recurred after treatment. Review of family videos showed a single 'minor' identical seizure 6 months previously. Magnetic resonance imaging was normal. Clonazepam brought immediate cessation of seizures, normalization of the EEG and a parallel spectacular improvement in communication, mood and language. Follow-up over the next 10 months showed a new regression unaccompained by recognized seizures, although numerous seizures were discovered during the videotaped neuropsychological examination, when stereotyped subtle brief paroxysmal changes in posture and behaviour could be studied in slow motion and compared with the 'prototypical' initial ones. The EEG showed predominant rare left-sided fronto-temporal discharges. Clonazepam was changed to carbamazepin with marked improvement in behaviour, language and cognition which has been sustained up to the last control at 51 months. Videotaped home observations allowed the documentation of striking qualitative and quantitative variations in social interaction and play of autistic type in relation to the epileptic activity. We conclude that this child has a special characteristic epileptic syndrome with subtle motor and vegetative symptomatology associated with an insidious catastrophic 'autistic-like' regression which could be overlooked. The methods used to document such fluctuating epileptic behavioural manifestations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: After sub-total hemi-section of cervical cord at level C7/C8 in monkeys, the ipsilesional hand exhibited a paralysis for a couple of weeks, followed by incomplete recovery of manual dexterity, reaching a plateau after 40-50 days. Recently, we demonstrated that the level of the plateau was related to the size of the lesion and that progressive plastic changes of the motor map in the contralesional motor cortex, particularly the hand representation, took place following a comparable time course. The goal of the present study was to assess, in three macaque monkeys, whether the hand representation in the ipsilesional primary motor cortex (M1) was also affected by the cervical hemi-section.¦RESULTS: Unexpectedly, based on the minor contribution of the ipsilesional hemisphere to the transected corticospinal (CS) tract, a considerable reduction of the hand representation was also observed in the ipsilesional M1. Mapping control experiments ruled out the possibility that changes of motor maps are due to variability of the intracortical microstimulation mapping technique. The extent of the size reduction of the hand area was nearly as large as in the contralesional hemisphere in two of the three monkeys. In the third monkey, it represented a reduction by a factor of half the change observed in the contralesional hemisphere. Although the hand representation was modified in the ipsilesional hemisphere, such changes were not correlated with a contribution of this hemisphere to the incomplete recovery of the manual dexterity for the hand affected by the lesion, as demonstrated by reversible inactivation experiments (in contrast to the contralesional hemisphere). Moreover, despite the size reduction of M1 hand area in the ipsilesional hemisphere, no deficit of manual dexterity for the hand opposite to the cervical hemi-section was detected.¦CONCLUSION: After cervical hemi-section, the ipsilesional motor cortex exhibited substantial reduction of the hand representation, whose extent did not match the small number of axotomized CS neurons. We hypothesized that the paradoxical reduction of hand representation in the ipsilesional hemisphere is secondary to the changes taking place in the contralesional hemisphere, possibly corresponding to postural adjustments and/or re-establishing a balance between the two hemispheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Motor abilities in schoolchildren have been decreasing in the last two decades (Bös, 2003, Tomkinson et al., 2003). This may be related to the dramatic increase in overweight and adiposity during the same time period. Children of migrant background are especially affected (Lasserre et al., 2007). But little is known about the relationship between BMI and migration background and motor abilities in preschool children. Methods/Design We carried out a cross-sectional analysis with 665 children (age 5.1 ± 0.6 years; 49.8 % female) of 40 randomly selected kindergarten classes from German and French speaking regions in Switzerland with a high migrant background. We investigated BMI, cardiorespiratory fitness (20 m shuttle run), static (displacement of center of pressure (COP)) and dynamic (balancing forward on a beam) postural control and overall fitness (obstacle course). Results: Of the children, 9.6 % were overweight, 10.5 % were obese (Swiss national percentiles) and 72.8 % were of migrant background (at least one parent born outside of Switzerland). Mean BMI from children of non-migrant background was 15.5 ± 1.1 kg/m2, while migrant children had a mean BMI of 15.8 ± 1.7 kg/m2 (p=0.08). Normal-weight children performed better in cardiorespiratory fitness (3.1 ± 1.4 vs. 2.6 ± 1.1 stages, p<0.001), overall fitness (18.9 ± 4.4 vs. 20.8 ± 4.6 sec, p<0.001) and in dynamic balance (4.9 ± 3.5 vs. 3.8 ± 2.5 steps, p<0.001) compared to overweight and obese children, while the latter had less postural sway (COP: 956 ± 302 vs. 1021 ± 212 mm, p=0.008). There was a clear inverse dose-response relationship between weight status and dynamic motor abilities. There were no significant differences in most tested motor abilities between non-migrant and migrant. The latter performed less well in only one motor test (overall fitness: 20.2 ± 5.2 vs. 18.3 ± 3.5 sec, p<0.001). These findings persisted after adjustment for BMI. Conclusion In preschool children, differences in motor abilities are already present between normal weight and overweight/obese children. However, migrant children demonstrate similar motor abilities compared to non-migrant children for almost all tests, despite their slightly higher BMI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objecte d’aquest projecte és dissenyar un Renault R26 de Fórmula 1 a escala 1/5 capaç de córrer i realitzar les accions pròpies d’un cotxe, de forma teledirigida. La carrosseria, el tipus de suspensions i xassís seran el més semblant possible al cotxe real i estarà propulsat amb un motor de combustió interna de 2 temps

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partint d'una estructura robòtica de 3 graus de llibertat, s'ha de fer el disseny deles unitats de potència i control , muntatge, conexionat, programació i posta enmarxa per poder generar trajectòries des d'un PC.Per aconseguir l'objectiu s'han realitzat les següents fites:a) Ajust i modificacions mecàniques de la estructura robòticaSubstitució de xavetes i canvi de pinyons.b) Implementar, modificar i ajustar elements elèctrics del robot.Substitució de motor elèctric espatllat, realitzar un nou cablejat cap a lanova unitat de control i substitució d'un sensor de posició.c) Disseny i muntatge de la unitat de potènciaSelecció de la targeta MD03 per controlar l'alimentació, velocitat i sentitde gir del motors, que controlen els 3 graus de llibertat. Mecanització enuna caixa incloent: fusibles, amperímetres i connectors. Cablejat elèctric iposta en funcionament.d) Disseny, muntatge elèctric i programació de la unitat de control.Selecció del PLC S7300Escollir el tipus de comunicacions que es realitzaran tant amb la unitat depotència com amb el PC.Disseny plànols elèctrics mitjançant el programa EPLAN.Mecanització, cablejat i posta en marxa del disseny elèctric.El disseny del software es realitzarà mitjançant l'eina de programacióSTEP7 de SiemensProgramació del PLC per poder treballar diferents tipus de moviments itrajectòriese) Disseny i programació de la interfície d'usuari des d'un PCProgramació d'una interfície gràfica mitjançant WinCC Flexible per tal quel'usuari només introduint dades pugui fer que el robot es mogui demanera manual o semiautomàtica . També s'ha programat per tal quegeneri trajectòries en mode automàtic.S'ha programat una illa de pick and place a mode d'exemplificació.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Although the painful shoulder is one of the most common dysfunctions of the locomotor apparatus, and is frequently treated both at primary healthcare centres and by specialists, little evidence has been reported to support or refute the effectiveness of the treatments most commonly applied. According to the bibliography reviewed, physiotherapy, which is the most common action taken to alleviate this problem, has not yet been proven to be effective, because of the small size of sample groups and the lack of methodological rigor in the papers published on the subject. No reviews have been made to assess the effectiveness of acupuncture in treating this complaint, but in recent years controlled randomised studies have been made and these demonstrate an increasing use of acupuncture to treat pathologies of the soft tissues of the shoulder. In this study, we seek to evaluate the effectiveness of physiotherapy applied jointly with acupuncture, compared with physiotherapy applied with a TENS-placebo, in the treatment of painful shoulder caused by subacromial syndrome (rotator cuff tendinitis and subacromial bursitis). METHODS/DESIGN Randomised controlled multicentre study with blind evaluation by an independent observer and blind, independent analysis. A study will be made of 465 patients referred to the rehabilitation services at participating healthcare centres, belonging to the regional public health systems of Andalusia and Murcia, these patients presenting symptoms of painful shoulder and a diagnosis of subacromial syndrome (rotator cuff tendinitis and subacromial bursitis). The patients will be randomised into two groups: 1) experimental (acupuncture + physiotherapy); 2) control (TENS-placebo + physiotherapy); the administration of rescue medication will also be allowed. The treatment period will have a duration of three weeks. The main result variable will be the change produced on Constant's Shoulder Function Assessment (SFA) Scale; as secondary variables, we will record the changes in diurnal pain intensity on a visual analogue scale (VAS), nocturnal pain intensity on the VAS, doses of non-steroid anti-inflammatory drugs (NSAIDs) taken during the study period, credibility scale for the treatment, degree of improvement perceived by the patient and degree of improvement perceived by the evaluator. A follow up examination will be made at 3, 6 and 12 months after the study period has ended. Two types of population will be considered for analysis: per protocol and per intention to treat. DISCUSSION The discussion will take into account the limitations of the study, together with considerations such as the choice of a simple, safe method to treat this shoulder complaint, the choice of the control group, and the blinding of the patients, evaluators and those responsible for carrying out the final analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the involvement of entorhinal cortex, hippocampus, and associative cortical areas is well established. Regarding the involvement of the primary motor cortex the reported data are contradictory. In order to determine whether the primary motor cortex is involved in AD, the brains of 29 autopsy cases were studied, including, 17 cases with severe cortical AD-type changes with definite diagnoses of AD, 7 age-matched cases with discrete to moderate cortical AD-type changes, and 5 control cases without any AD-type cortical changes. Morphometric analysis of the cortical surface occupied by senile plaques (SPs) on beta-amyloid-immunostained sections and quantitative analysis of neurofibrillary tangles (NFTs) on Gallyas-stained sections was performed in 5 different cortical areas including the primary motor cortex. The percentage of cortical surface occupied by SPs was similar in all cortical areas, without significant difference and corresponded to 16.7% in entorhinal cortex, 21.3% in frontal associative, 16% in parietal associative, and 15.8% in primary motor cortex. The number of NFTs in the entorhinal cortex was significantly higher (41 per 0.4 mm2), compared with those in other cortical areas (20.5 in frontal, 17.9 in parietal and 11.5 in the primary motor cortex). Our findings indicate that the primary motor cortex is significantly involved in AD and suggest the appearance of motor dysfunction in late and terminal stages of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive control refers to a set of abilities enabling us to plan, control and implement our behavior to rapidly and flexibly adapt to environmental requirements. These adaptations notably involve the suppression of intended or ongoing cognitive or motor processes, a skill referred to as "inhibitory control". To implement efficient executive control of behavior, one must monitor our performance following errors to adjust our behavior accordingly. Deficits in inhibitory control have been associated with the emergènce of a wide range of psychiatric disorders, ranging from drug addiction to attention deficit/hyperactivity disorders. Inhibitory control deficits could, however, be remediated- The brain has indeed the amazing possibility to reorganize following training to allow for behavioral improvements. This mechanism is referred to as neural and behavioral plasticity. Here, our aim is to investigate training-induced plasticity in inhibitory control and propose a model of inhibitory control explaining the spatio- temporal brain mechanisms supporting inhibitory control processes and their plasticity. In the two studies entitled "Brain dynamics underlying training-induced improvement in suppressing inappropriate action" (Manuel et al., 2010) and "Training-induced neuroplastic reinforcement óf top-down inhibitory control" (Manuel et al., 2012c), we investigated the neurophysiological and behavioral changes induced by inhibitory control training with two different tasks and populations of healthy participants. We report that different inhibitory control training developed either automatic/bottom-up inhibition in parietal areas or reinforced controlled/top-down inhibitory control in frontal brain regions. We discuss the results of both studies in the light of a model of fronto-basal inhibition processes. In "Spatio-temporal brain dynamics mediating post-error behavioral adjustments" (Manuel et al., 2012a), we investigated how error detection modulates the processing of following stimuli and in turn impact behavior. We showed that during early integration of stimuli, the activity of prefrontal and parietal areas is modulated according to previous performance and impacts the post-error behavioral adjustments. We discuss these results in terms of a shift from an automatic to a controlled form of inhibition induced by the detection of errors, which in turn influenced response speed. In "Inter- and intra-hemispheric dissociations in ideomotor apraxia: a large-scale lesion- symptom mapping study in subacute brain-damaged patients" (Manuel et al., 2012b), we investigated ideomotor apraxia, a deficit in performing pantomime gestures of object use, and identified the anatomical correlates of distinct ideomotor apraxia error types in 150 subacute brain-damaged patients. Our results reveal a left intra-hemispheric dissociation for different pantomime error types, but with an unspecific role for inferior frontal areas. Les fonctions exécutives désignent un ensemble de processus nous permettant de planifier et contrôler notre comportement afin de nous adapter de manière rapide et flexible à l'environnement. L'une des manières de s'adapter consiste à arrêter un processus cognitif ou moteur en cours ; le contrôle de l'inhibition. Afin que le contrôle exécutif soit optimal il est nécessaire d'ajuster notre comportement après avoir fait des erreurs. Les déficits du contrôle de l'inhibition sont à l'origine de divers troubles psychiatriques tels que l'addiction à la drogue ou les déficits d'attention et d'hyperactivité. De tels déficits pourraient être réhabilités. En effet, le cerveau a l'incroyable capacité de se réorganiser après un entraînement et ainsi engendrer des améliorations comportementales. Ce mécanisme s'appelle la plasticité neuronale et comportementale. Ici, notre but èst d'étudier la plasticité du contrôle de l'inhibition après un bref entraînement et de proposer un modèle du contrôle de l'inhibition qui permette d'expliquer les mécanismes cérébraux spatiaux-temporels sous-tendant l'amélioration du contrôle de l'inhibition et de leur plasticité. Dans les deux études intitulées "Brain dynamics underlying training-induced improvement in suppressing inappropriate action" (Manuel et al., 2010) et "Training-induced neuroplastic reinforcement of top-down inhibitory control" (Manuel et al., 2012c), nous nous sommes intéressés aux changements neurophysiologiques et comportementaux liés à un entraînement du contrôle de l'inhibition. Pour ce faire, nous avons étudié l'inhibition à l'aide de deux différentes tâches et deux populations de sujets sains. Nous avons démontré que différents entraînements pouvaient soit développer une inhibition automatique/bottom-up dans les aires pariétales soit renforcer une inhibition contrôlée/top-down dans les aires frontales. Nous discutons ces résultats dans le contexte du modèle fronto-basal du contrôle de l'inhibition. Dans "Spatio-temporal brain dynamics mediating post-error behavioral adjustments" (Manuel et al., 2012a), nous avons investigué comment la détection d'erreurs influençait le traitement du prochain stimulus et comment elle agissait sur le comportement post-erreur. Nous avons montré que pendant l'intégration précoce des stimuli, l'activité des aires préfrontales et pariétales était modulée en fonction de la performance précédente et avait un impact sur les ajustements post-erreur. Nous proposons que la détection d'erreur ait induit un « shift » d'un mode d'inhibition automatique à un mode contrôlé qui a à son tour influencé le temps de réponse. Dans "Inter- and intra-hemispheric dissociations in ideomotor apraxia: a large-scale lesion-symptom mapping study in subacute brain-damaged patients" (Manuel et al., 2012b), nous avons examiné l'apraxie idémotrice, une incapacité à exécuter des gestes d'utilisation d'objets, chez 150 patients cérébro-lésés. Nous avons mis en avant une dissociation intra-hémisphérique pour différents types d'erreurs avec un rôle non spécifique pour les aires frontales inférieures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual attention depends on bottom-up sensory activation and top-down attentional guidance. Although aging is known to affect sensory processing, its impact on the top-down control of attention remains a matter of debate. We investigated age-related modulations of brain oscillatory activity during visual attention using a variant of the attention network test (ANT) in 20 young and 28 elderly adults. We examined the EEG oscillatory responses to warning and target signals, and explored the correlates of temporal and spatial orienting as well as conflict resolution at target presentation. Time-frequency analysis was performed between 4 and 30Hz, and the relationship between behavioral and brain oscillatory responses was analyzed. Whereas temporal cueing and conflict had similar reaction time effects in both age groups, spatial cueing was more beneficial to older than younger subjects. In the absence of cue, posterior alpha activation was drastically reduced in older adults, pointing to an age-related decline in anticipatory attention. Following both cues and targets, older adults displayed pronounced motor-related activation in the low beta frequency range at the expense of attention-related posterior alpha activation prominent in younger adults. These findings support the recruitment of alternative motor-related circuits in the elderly, in line with the dedifferentiation hypothesis. Furthermore, older adults showed reduced midparietal alpha inhibition induced by temporal orienting as well as decreased posterior alpha activation associated with both spatial orienting and conflict resolution. Altogether, the results are consistent with an overall reduction of task-related alpha activity in the elderly, and provide functional evidence that younger and older adults engage distinct brain circuits at different oscillatory frequencies during attentional functions.