934 resultados para sensory modality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural correlates have been described for emotions evoked by states of homeostatic imbalance (e.g. thirst, hunger, and breathlessness) and for emotions induced by external sensory stimulation (such as fear and disgust). However, the neurobiological mechanisms of their interaction, when they are experienced simultaneously, are still unknown. We investigated the interaction on the neurobiological and the perceptional level using subjective ratings, serum parameters, and functional magnetic resonance imaging (fMRI) in a situation of emotional rivalry, when both a homeostatic and a sensory-evoked emotion were experienced at the same time. Twenty highly dehydrated male subjects rated a disgusting odor as significantly less repulsive when they were thirsty. On the neurobiological level, we found that this reduction in subjective disgust during thirst was accompanied by a significantly reduced neural activity in the insular cortex, a brain area known to be considerably involved in processing of disgust. Furthermore, during the experience of disgust in the satiated condition, we observed a significant functional connectivity between brain areas responding to the disgusting odor, which was absent during the stimulation in the thirsty condition. These results suggest interference of conflicting emotions: An acute homeostatic imbalance can attenuate the experience of another emotion evoked by the sensory perception of a potentially harmful external agent. This finding offers novel insights with regard to the behavioral relevance of biologically different types of emotions, indicating that some types of emotions are more imperative for behavior than others. As a general principle, this modulatory effect during the conflict of homeostatic and sensory-evoked emotions may function to safeguard survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaesthesia is a condition in which a stimulus elicits an additional subjective experience. For example, the letter E printed in black (the inducer) may trigger an additional colour experience as a concurrent (e.g., blue). Synaesthesia tends to run in families and thus, a genetic component is likely. However, given that the stimuli that typically induce synaesthesia are cultural artefacts, a learning component must also be involved. Moreover, there is evidence that synaesthetic experiences not only activate brain areas typically involved in processing sensory input of the concurrent modality; synaesthesia seems to cause a structural reorganisation of the brain. Attempts to train non-synaesthetes with synaesthetic associations have been successful in mimicking certain behavioural aspects and posthypnotic induction of synaesthetic experiences in non-synaesthetes has even led to the according phenomenological reports. These latter findings suggest that structural brain reorganization may not be a critical precondition, but rather a consequence of the sustained coupling of inducers and concurrents. Interestingly, synaesthetes seem to be able to easily transfer synaesthetic experiences to novel stimuli. Beyond this, certain drugs (e.g., LSD) can lead to synaesthesia-like experiences and may provide additional insights into the neurobiological basis of the condition. Furthermore, brain damage can both lead to a sudden presence of synaesthetic experiences in previously non-synaesthetic individuals and a sudden absence of synaesthesia in previously synaesthetic individuals. Moreover, enduring sensory substitution has been effective in inducing a kind of acquired synaesthesia. Besides informing us about the cognitive mechanisms of synaesthesia, synaesthesia research is relevant for more general questions, for example about consciousness such as the binding problem, about crossmodal correspondences and about how individual differences in perceiving and experiencing the world develop. Hence the aim of the current Research Topic is to provide novel insights into the development of synaesthesia both in its genuine and acquired form. We welcome novel experimental work and theoretical contributions (e.g., review and opinion articles) focussing on factors such as brain maturation, learning, training, hypnosis, drugs, sensory substitution and brain damage and their relation to the development of any form of synaesthesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES Reliability is an essential condition for using quantitative sensory tests (QSTs) in research and clinical practice, but information on reliability in patients with chronic pain is sparse. The aim of this study was to evaluate the reliability of different QST in patients with chronic low back pain. METHODS Eighty-nine patients with chronic low back pain participated in 2 identical experimental sessions, separated by at least 7 days. The following parameters were recorded: pressure pain detection and tolerance thresholds at the toe, electrical pain thresholds to single and repeated stimulation, heat pain detection and tolerance thresholds at the arm and leg, cold pain detection threshold at the arm and leg, and conditioned pain modulation using the cold pressor test.Reliability was analyzed using the coefficient of variation, the coefficient of repeatability, and the intraclass correlation coefficient. It was judged as acceptable or not based primarily on the analysis of the coefficient of repeatability. RESULTS The reliability of most tests was acceptable. Exceptions were cold pain detection thresholds at the leg and arm. CONCLUSIONS Most QST measurements have acceptable reliability in patients with chronic low back pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human emotions are essential for survival. They are vital for the satisfaction of basic needs, the regulation of personal life and successful integration into social structures. Depending on which aspect of an emotion is used in its definition, many different theories offer possible answers to the questions of what emotions are and how they can be distinguished. The systematic investigation of emotions in cognitive neuroscience is relatively new, and neuroimaging studies specifically focussing on the neural correlates of different categories of emotions are still lacking. Therefore, the current thesis aimed at investigating the behavioural and neurophysiological correlates of different human emotional levels and their interaction in healthy subjects. We differentiated between emotions according to their cerebral entry site and neural processing pathways: homeostatic emotions, which are elicited by metabolic changes and processed by the interoceptive system (such as thirst, hunger, and need for air), and sensory-evoked emotions, which are evoked by external inputs via the eyes, ears or nose, or their corresponding mental representations and processed in the brain as sensory perception (e.g. fear, disgust, or pride). Using functional magnetic resonance imaging (fMRI) and behavioural parameters, we examined both the specific neural underpinnings of a homeostatic emotion (thirst) and a sensory-evoked emotion (disgust), and their interaction in a situation of emotional rivalry when both emotions were perceived simultaneously. This thesis comprises three research articles reporting the results of this research. The first paper presents disgust-related brain imaging data in a thirsty and a satiated condition. We found that disgust mainly activated the anterior insular cortex. In the thirsty condition, however, we observed an interaction effect between disgust and thirst: when thirsty, the subjects rated the disgusting stimulus as less repulsive. On the neurobiological level, this reduction of subjective disgust was accompanied by significantly reduced neural activity in the insular cortex. These results provide new neurophysiological evidence for a hierarchical organization among homeostatic and sensory-evoked emotions, revealing that in a situation of emotional conflict, homeostatic emotions are prioritized over sensory-evoked emotions. In the second paper, findings on brain perfusion over four different thirst stages are reported, with a special focus on the parametric progression of thirst. Cerebral perfusion differences over all thirst stages were found in the posterior insular cortex. Taking this result together with the findings of the first paper, the insular cortex seems to be a key player in human emotional processing, since it comprises specific representations of homeostatic and sensory-evoked emotions and also represents the site of cortical interaction between the two levels of emotions. Finally, although this thesis focussed on the homeostatic modulation of disgust, we were also interested in whether dehydration modulates taste perception. The results of this behavioural experiment are described in the third paper, where we show that dehydration alters the perception of neutral taste stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES This study compared clinical outcomes and revascularization strategies among patients presenting with low ejection fraction, low-gradient (LEF-LG) severe aortic stenosis (AS) according to the assigned treatment modality. BACKGROUND The optimal treatment modality for patients with LEF-LG severe AS and concomitant coronary artery disease (CAD) requiring revascularization is unknown. METHODS Of 1,551 patients, 204 with LEF-LG severe AS (aortic valve area <1.0 cm(2), ejection fraction <50%, and mean gradient <40 mm Hg) were allocated to medical therapy (MT) (n = 44), surgical aortic valve replacement (SAVR) (n = 52), or transcatheter aortic valve replacement (TAVR) (n = 108). CAD complexity was assessed using the SYNTAX score (SS) in 187 of 204 patients (92%). The primary endpoint was mortality at 1 year. RESULTS LEF-LG severe AS patients undergoing SAVR were more likely to undergo complete revascularization (17 of 52, 35%) compared with TAVR (8 of 108, 8%) and MT (0 of 44, 0%) patients (p < 0.001). Compared with MT, both SAVR (adjusted hazard ratio [adj HR]: 0.16; 95% confidence interval [CI]: 0.07 to 0.38; p < 0.001) and TAVR (adj HR: 0.30; 95% CI: 0.18 to 0.52; p < 0.001) improved survival at 1 year. In TAVR and SAVR patients, CAD severity was associated with higher rates of cardiovascular death (no CAD: 12.2% vs. low SS [0 to 22], 15.3% vs. high SS [>22], 31.5%; p = 0.037) at 1 year. Compared with no CAD/complete revascularization, TAVR and SAVR patients undergoing incomplete revascularization had significantly higher 1-year cardiovascular death rates (adj HR: 2.80; 95% CI: 1.07 to 7.36; p = 0.037). CONCLUSIONS Among LEF-LG severe AS patients, SAVR and TAVR improved survival compared with MT. CAD severity was associated with worse outcomes and incomplete revascularization predicted 1-year cardiovascular mortality among TAVR and SAVR patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood loss and bleeding complications may often be observed in critically ill patients on renal replacement therapies (RRT). Here we investigate procedural (i.e. RRT-related) and non-procedural blood loss as well as transfusion requirements in regard to the chosen mode of dialysis (i.e. intermittent haemodialysis [IHD] versus continuous veno-venous haemofiltration [CVVH]). Two hundred and fifty-two patients (122 CVVH, 159 male; aged 61.5±13.9 years) with dialysis-dependent acute renal failure were analysed in a sub-analysis of the prospective randomised controlled clinical trial-CONVINT-comparing IHD and CVVH. Bleeding complications including severity of bleeding and RRT-related blood loss were assessed. We observed that 3.6% of patients died related to severe bleeding episodes (between group P=0.94). Major all-cause bleeding complications were observed in 23% IHD versus 26% of CVVH group patients (P=0.95). Under CVVH, the rate of RRT-related blood loss events (57.4% versus 30.4%, P=0.01) and mean total blood volume lost was increased (222.3±291.9 versus 112.5±222.7 ml per patient, P <0.001). Overall, transfusion rates did not differ between the study groups. In patients with sepsis, transfusion rates of all blood products were significantly higher when compared to cardiogenic shock (all P <0.01) or other conditions. In conclusion, procedural and non-procedural blood loss may often be observed in critically ill patients on RRT. In CVVH-treated patients, procedural blood loss was increased but overall transfusion rates remained unchanged. Our data show that IHD and CVVH may be regarded as equivalent approaches in critically ill patients with dialysis-dependent acute renal failure in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility and inter-session repeatability of sensory threshold measurements using an electronic von Frey anesthesiometer (VFA) were assessed in a group of six neurologically normal dogs. Sensory threshold values obtained in neurologically normal dogs were compared to those of dogs with acute spinal cord injury (SCI) caused by intervertebral disc extrusion (n=6) and to a group of neurologically normal dogs with cranial cruciate ligament rupture (CCLR; n=6). Sensory threshold values in neurologically normal dogs were 155.8 ± 37.7 g and 154.7 ± 67.2 g for the left and right pelvic limbs, respectively. The difference in mean sensory threshold values obtained for the group when two distinct testing sessions were compared was not statistically significant (P>0.05). Mean sensory threshold values for the group with SCI were significantly higher than those for neurologically normal dogs at 351.1 ± 116.5 g and 420.3 ± 157.7 g for the left and right pelvic limbs, respectively (P=0.01). A comparison of sensory threshold values for the group with CCLR and neurologically normal dogs was not statistically significant (P>0.05). The modified dorsal technique for VFA described here represents a reliable method to assess sensory threshold in neurologically normal dogs and in those with SCI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration) and longer (1000-ms standard duration) intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the 1-s range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the 1-s range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal outgrowth has been proposed in many systems as a mechanism underlying memory storage. For example, sensory neuron outgrowth is widely accepted as an underlying mechanism of long-term sensitization of defensive withdrawal reflexes in Aplysia. The hypothesis is that learning leads to outgrowth and consequently to the formation of new synapses, which in turn strengthen the neural circuit underlying the behavior. However, key experiments to test this hypothesis have never been performed. ^ Four days of sensitization training leads to outgrowth of siphon sensory neurons mediating the siphon-gill withdrawal response in Aplysia . We found that a similar training protocol produced robust outgrowth in tail sensory neurons mediating the tail siphon withdrawal reflex. In contrast, 1 day of training, which effectively induces long-term behavioral sensitization and synaptic facilitation, was not associated with neuronal outgrowth. Further examination of the effect of behavioral training protocols on sensory neuron outgrowth indicated that this structural modification is associated only with the most persistent forms of sensitization, and that the induction of these changes is dependent on the spacing of the training trials over multiple days. Therefore, we suggest that neuronal outgrowth is not a universal mechanism underlying long-term sensitization, but is involved only in the most persistent forms of the memory. ^ Sensory neuron outgrowth presumably contributes to long-term sensitization through formation of new synapses with follower motor neurons, but this hypothesis has never been directly tested. The contribution of outgrowth to long-term sensitization was assessed using confocal microscopy to examine sites of contact between physiologically connected pairs of sensory and motor neurons. Following 4 days of training, the strength of both the behavior and sensorimotor synapse and the number of appositions with follower neurons was enhanced only on the trained side of the animal. In contrast, outgrowth was induced on both sides of the animal, indicating that although sensory neuron outgrowth does appear to contribute to sensitization through the formation of new synapses, outgrowth alone is not sufficient to account for the effects of sensitization. This indicates that key regulatory steps are downstream from outgrowth, possibly in the targeting of new processes and activation of new synapses. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic respiratory illnesses are a significant cause of morbidity and mortality, and acute changes in respiratory function often lead to hospitalization. Air pollution is known to exacerbate asthma, but the molecular mechanisms of this are poorly understood. The current studies were aimed at clarifying the roles of nerve subtypes and purinergic receptors in respiratory reflex responses following exposure to irritants. In C57Bl/6J female mice, inspired adenosine produced sensory irritation, shown to be mediated mostly by A-delta fibers. Secondly, the response to inhaled acetic acid was discovered to be dually influenced by C and A-delta fibers, as indicated by the observed effects of capsaicin pretreatment, which selectively destroys TRPV1-expressing fibers (mostly C fibers) and pretreatment with theophylline, a nonselective adenosine receptor antagonist. The responses to both adenosine and acetic acid were enhanced in the ovalbumin-allergic airway disease model, although the particular pathway altered is still unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropathic pain is a debilitating neurological disorder that may appear after peripheral nerve trauma and is characterized by persistent, intractable pain. The well-studied phenomenon of long-term hyperexcitability (LTH), in which sensory somata become hyperexcitable following peripheral nerve injury may be important for both chronic pain and long-lasting memory formation, since similar cellular alterations take place after both injury and learning. Though axons have previously been considered simple conducting cables, spontaneous afferent signals develop from some neuromas that form at severed nerve tips, indicating intrinsic changes in sensory axonal excitability may contribute to this intractable pain. Here we show that nerve transection, exposure to serotonin, and transient depolarization induce long-lasting sensory axonal hyperexcitability that is localized to the treated nerve segment and requires local translation of new proteins. Long-lasting functional plasticity may be a general property of axons, since both injured and transiently depolarized motor axons display LTH as well. Axonal hyperexcitability may represent an adaptive mechanism to overcome conduction failure after peripheral injury, but also displays key features shared with cellular analogues of memory including: site-specific changes in neuronal function, dependence on transient, focal depolarization for induction, and requirement for synthesis of new proteins for expression of long-lasting effects. The finding of axonal hyperexcitability after nerve injury sheds new light on the clinical problem of chronic neuropathic pain, and provides more support for the hypothesis that mechanisms of long-term memory storage evolved from primitive adaptive responses to injury. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about how dying children and their parents experience death. Dying children have reported death related sensory experiences (DRSEs), defined as seeing or hearing someone or something not visible or audible to others, associated with dying. Although parents report that they and the dying child benefit from these experiences, healthcare providers often unknowingly dismiss them. The aims of this phenomenological inquiry were to describe children's DRSEs and their meaning from the parents' perspectives. Four fathers and six mothers of African American, Caucasian, or Hispanic ethnicity, all Christian, ranging in age from 35 to 59 years, whose child died 23 to 52 months prior and was treated at a children's cancer center, were interviewed in the home or hospital setting of their choice. Children's ages at the time of their death ranged from 4 to 13 years. A modification of van Kaarn's phenomenological method of analysis was used to analyze data. Themes emerging from the data for the first aim were: perceiving someone or something from a spiritual realm others could not, expressing awareness tempered by parental reactions, and embracing transcendence. Themes emerging from the data for the second aim were: spiritual beings prepared child; child revealed reality, preparing parents; and child transcended wholly, easing parents' grief. Post-interview surveys revealed that parents found participating in this study a "very positive" or "positive" experience, particularly being able to tell the story of their child. Children's DRSEs have clinical implications for all who provide care near the end of life. Informing parents of DRSEs, cautioning that not all dying children express them, may help parents to anticipate this phenomenon, which may decrease anxiety when their child expresses them, increasing the opportunity for open dialogue between parent and child about dying and death, and decrease regrets associated with being unreceptive to their child's expressions of death awareness. Validating a child's DRSE can have profound effects on bereaved parents. Examining DRSEs from the child's perspective and the influence of informing parents of DRSEs on the dying experience of the child and the parental grieving process are recommended. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SRI is unique among known photoreceptors in that it produces opposite signals depending on the color of light stimuli. Absorption of orange light (587 nm) triggers an attractant response by the cell, whereas absorption of orange light followed by near-UV light (373 run) triggers a repellent response. Using behavioral mutants that exhibit aberrant color-sensing ability, we tested a two-conformation equilibrium model, using FRET and EPR spectroscopy. The essence of the model applied to SRI-HtrI is that the complex exists in a metastable two-conformer equilibrium which is shifted in one direction by orange light absorption (producing an attractant signal) and in the opposite direction by a second UV-violet photon (producing a repellent signal). First, by FRET we found that the E-F cytoplasmic loop of SRI moves toward the RAMP domain of the HtrI transducer during the formation of the orange-light activated signaling state of the complex. This is the first localization of a change in the physical relationship between the receptor and transducer subunits of the complex and provides a structural property of the two proposed conformers that we can monitor. Second, EPR spectra of a spin label probe at this cytoplasmic position showed shifts in the dark in the mutants toward shorter or longer EF loop-RAMP distances, explaining their behavior in terms of their mutations causing pre-stimulus shifts into one or the other conformer. ^ Next, we applied a novel electrophysiological method for monitoring the directionality of proton movement during photoactivation of SRI, to investigate the process of proton transfer in the photoactive site from the chromophore to proton acceptors on both the wildtype and aberrant color-response mutants. We observed an unexpected and critical difference in the two signaling conformations of the SRI-HtrI complex. The finding is that the vectoriality (i.e. movement away or toward the cytoplasm) of the light-induced proton transfer from the chromophore to the protein is opposite in formation of the two conformations. Retinylidene proton transfer is a common critical process in rhodopsins and these results are the first to show differences in vectoriality in a rhodopsin receptor, and to demonstrate functional importance of the direction of proton transfer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation therapy has been used as an effective treatment for malignancies in pediatric patients. However, in many cases, the side effects of radiation diminish these patients’ quality of life. In order to develop strategies to minimize radiogenic complications, one must first quantitatively estimate pediatric patients’ relative risk for radiogenic late effects, which has not become feasible till recently because of the calculational complexity. The goals of this work were to calculate the dose delivered to tissues and organs in pediatric patients during contemporary photon and proton radiotherapies; to estimate the corresponding risk of radiogenic second cancer and cardiac toxicity based on the calculated doses and on dose-risk models from the literature; to test for the statistical significance of the difference between predicted risks after photon versus proton radiotherapies; and to provide a prototype of an evidence-based approach to selecting treatment modalities for pediatric patients, taking second cancer and cardiac toxicity into account. The results showed that proton therapy confers a lower predicted risk of radiogenic second cancer, and lower risks of radiogenic cardiac toxicities, compared to photon therapy. An uncertainty analysis revealed that the qualitative findings of this study are insensitive to changes in a wide variety of host and treatment related factors.