988 resultados para seismic reflection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic wide-angle reflection/refraction method is the one of the most effective method for probing the crustal and upper mantle structure. It mainly uses the wide-angle reflection information from the boundary in the crust and the top boundary of the upper mantle to rebuild the crust and upper mantle structure. Through analyzing the reflection and transmission coefficients of various incident waves on the interface, we think relative to the pre-critical angle reflection information the post critical angle reflection information that received by wide-angle seismic data exists a time-shift effect with the offset variation, and then it must cause the error for velocity analysis and structure image. The feature of the wide-angle seismic wave field of the fourteen representative crust columns tell us that the wide-angle effects in the different representative tectonic units for the interface depth and the interval velocity in crust. We studied the features of the wide-angle seismic wave field through building the crust model and inverse its travel time by GA method to know the wide-angle influence on crustal velocity image. At last we finished the data processing of the Tunxi-Wenzhou wide-angle seismic profile. The results are as following: (1) Through building crust model, we labeled the travel time for all the phases by ray tracing method and remove wide-angle effects method, it revealed the wide-angle effect exists in the seismic data. (2) The travel time inversion by GA method can tell us that the depth by traditional ray tracing method is shallower than the result by remove wide-angle effects method, the latter can recover the crust structure model in effect. (3) We applied the two method mentioned before to the fourteen representative crust columns in China. It indicates that the removed wide-angle effect method in travel time inversion is reasonable and effective. (4) The real data processing from Tunxi-Wenzhou wide-angle seismic profile give us the basic structure through the two ways. The main influence exhibits in the difference of the interval velocity of the curst, and the wide-angle effects in shallow interface are stronger than the deep interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real earth is far away from an ideal elastic ball. The movement of structures or fluid and scattering of thin-layer would inevitably affect seismic wave propagation, which is demonstrated mainly as energy nongeometrical attenuation. Today, most of theoretical researches and applications take the assumption that all media studied are fully elastic. Ignoring the viscoelastic property would, in some circumstances, lead to amplitude and phase distortion, which will indirectly affect extraction of traveltime and waveform we use in imaging and inversion. In order to investigate the response of seismic wave propagation and improve the imaging and inversion quality in complex media, we need not only consider into attenuation of the real media but also implement it by means of efficient numerical methods and imaging techniques. As for numerical modeling, most widely used methods, such as finite difference, finite element and pseudospectral algorithms, have difficulty in dealing with problem of simultaneously improving accuracy and efficiency in computation. To partially overcome this difficulty, this paper devises a matrix differentiator method and an optimal convolutional differentiator method based on staggered-grid Fourier pseudospectral differentiation, and a staggered-grid optimal Shannon singular kernel convolutional differentiator by function distribution theory, which then are used to study seismic wave propagation in viscoelastic media. Results through comparisons and accuracy analysis demonstrate that optimal convolutional differentiator methods can solve well the incompatibility between accuracy and efficiency, and are almost twice more accurate than the same-length finite difference. They can efficiently reduce dispersion and provide high-precision waveform data. On the basis of frequency-domain wavefield modeling, we discuss how to directly solve linear equations and point out that when compared to the time-domain methods, frequency-domain methods would be more convenient to handle the multi-source problem and be much easier to incorporate medium attenuation. We also prove the equivalence of the time- and frequency-domain methods by using numerical tests when assumptions with non-relaxation modulus and quality factor are made, and analyze the reason that causes waveform difference. In frequency-domain waveform inversion, experiments have been conducted with transmission, crosshole and reflection data. By using the relation between media scales and characteristic frequencies, we analyze the capacity of the frequency-domain sequential inversion method in anti-noising and dealing with non-uniqueness of nonlinear optimization. In crosshole experiments, we find the main sources of inversion error and figure out how incorrect quality factor would affect inverted results. When dealing with surface reflection data, several frequencies have been chosen with optimal frequency selection strategy, with which we use to carry out sequential and simultaneous inversions to verify how important low frequency data are to the inverted results and the functionality of simultaneous inversion in anti-noising. Finally, I come with some conclusions about the whole work I have done in this dissertation and discuss detailly the existing and would-be problems in it. I also point out the possible directions and theories we should go and deepen, which, to some extent, would provide a helpful reference to researchers who are interested in seismic wave propagation and imaging in complex media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By seismic tomography, interesting results have been achieved not only in the research of the geosphere with a large scale but also in the exploration of resources and projects with a small scale since 80'. Compared with traditional inversion methods, seismic tomography can offer more and detailed information about subsurface and has been being paid attention by more and more geophysicists. Since inversion based on forward modeling, we have studied and improved the methods to calculate seismic traveltimes and raypaths in isotropic and anisotropic media, and applied the improved forward methods to traveltime tomography. There are three main kinds of methods to calculate seismic traveltime field and its ray path distribution, which are ray-tracing theory, eikonal equation by the finite-difference and minimum traveltime tree algorithm. In ray tracing, five methods are introduced in the paper, including analytic ray tracing, ray shooting, ray bending, grid ray tracing and rectangle grid ray perturbation with three points. Finite-difference solution of eikonal equation is very efficient in calculation of seismic first-break, but is awkward in calculation of reflection traveltimes. We have put forward a idea to calculate traveltimes of reflected waves using a combining way of eikonal equation method and other one in order to improve its capability of dealing with reflection waves. The minimum traveltime tree algorithm has been studied with emphases. Three improved algorithms are put forward on the basis of basic algorithm of the minimum traveltime tree. The first improved algorithm is called raypath tracing backward minimum traveltime algorithm, in which not only wavelets from the current source but also wavelets from upper source points are all calculated. The algorithm can obviously improve the speed of calculating traveltimes and raypaths in layered or blocked homogeneous media and keep good accuracy. The second improved algorithm is raypath key point minimum traveltime algorithm in which traveltimes and raypaths are calculated with a view of key points of raypaths (key points of raypths mean the pivotal points which determine raypaths). The raypath key point method is developed on the basis of the first improved algorithm, and has better applicability. For example, it is very efficient even for inhomogeneous media. Another improved algorithm, double grid minimum traveltime tree algorithm, bases upon raypath key point scheme, in which a model is divided with two kinds of grids so that the unnecessary calculation can be left out. Violent undulation of curved interface often results in the phenomenon that there are no reflection points on some parts of interfaces where there should be. One efficacious scheme that curved interfaces are divided into segments, and these segments are treated respectively is presented to solve the problem. In addition, the approximation to interfaces with discrete grids leads to large errors in calculation of traveltimes and raypaths. Noting the point, we have thought a new method to remove the negative effect of mesh and to improve calculation accuracy by correcting the traveltimes with a little of additional calculation, and obtained better results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1970s, igneous reservoirs such as Shang741, Bin674 and Luol51 have been found in Jiyang depression, which are enrichment and heavy-producing. Showing good prospect of exploration and development, igneous reservoirs have been the main part of increasing reserves and production in Shengli oilfield. As fracture igneous reservoir being an extraordinary complex concealed reservoir and showing heavy heterogeneity in spatial distribution, the study of recognition, prediction, formation mechanism and the law of distribution of fracture is essential to develop the reservoir. Guided by multiple discipline theory such as sedimentology, geophysics, mineralogy, petroleum geology, structural geology and reservoir engineering, a set of theories and methods of recognition and prediction of fractured igneous rock reservoir are formed in this paper. Rock data, three-dimensional seismic data, log data, borehole log data, testing data and production data are combined in these methods by the means of computer. Based on the research of igneous rock petrography and reservoir formation mechanism, emphasized on the assessment and forecast of igneous rock reservoir, aimed at establishing a nonhomogeneity quantification model of fractured igneous rock reservoir, the creativity on the fracture recognition, prediction and formation mechanism are achieved. The research result is applied to Jiyang depression, suggestion of exploration and development for fractured igneous rock reservoir is supplied and some great achievement and favourable economic effect are achieved. The main achievements are gained as follows: 1. The main facies models of igneous rock reservoir in JiYang depression are summarized. Based on data and techniques of seism, well log and logging,started from the research of single well rock facies, proceeded by seismic and log facies research, from point to line and line to face, the regional igneous facies models are established. And hypabyssal intrusion allgovite facies model, explosion volcaniclastic rock facies model and overfall basaltic rocks facies model are the main facies models of igneous rock reservoir in JiYang depression. 2. Four nonhomogenous reservoir models of igneous reservoirs are established, which is the base of fracture prediction and recognition. According to characteristics of igneous petrology and spatial types of reservoir, igneous reservoirs of Jiyang depression are divided into four categories: fractured irruptive rock reservoir, fracture-pore thermocontact metamorphic rock and irruptive rock compound reservoir, pore volcanic debris cone reservoir and fracture-pore overfall basaltic rock reservoir. The spatial distribution of each model's reservoir has its features. And reservoirs can be divided into primary ones and secondary ones, whose mechanism of formation and laws of distribution are studied in this paper. 3. Eight geologic factors which dominate igneous reservoirs are presented. The eight geologic factors which dominates igneous reservoirs are igneous facies, epigenetic tectonics deformation, fracture motion, intensity of intrusive effect and adjoining-rock characters, thermo-contact metamorphic rock facies, specific volcano-tectonic position, magmatic cyclicity and epigenetic diagenetic evolution. The interaction of the eight factors forms the four types nonhomogenous reservoir models of igneous reservoirs in Jiyang depression. And igneous facies and fracture motion are the most important and primary factors. 4. Identification patterns of seismic, well log and logging facies of igneous rocks are established. Igneous rocks of Jiyang depression show typical reflecting features on seismic profile. Tabular reflection seismic facies, arc reflection seismic facies and hummocky or mushroom reflection seismic facies are the three main facies. Logging response features of basic basalt and diabase are shown as typical "three low and two high", which means low natural gamma value, low interval transit-time, low neutron porosity, high resistivity and high density. Volcaniclastic rocks show "two high and three low"-high neutron porosity, high interval transit-time, low density, low-resistance and low natural gamma value. Thermo-contact metamorphic rocks surrounding to diabase show "four high and two low" on log data, which is high natural gamma value, high self-potential anomaly, high neutron porosity, high interval transit-time and low density and low-resistance. Based on seismic, well log and logging data, spatial shape of Shang 741 igneous rock is described. 5. The methods of fracture prediction and recognition for fractured igneous reservoir are summarized. Adopting FMI image log and nuclear magnetic resonance log to quantitative analysis of fractured igneous reservoir and according to formation mechanism and shape of fracture, various fractures are recognized, such as high-angle fracture, low-angle fracture, vertical fracture, reticulated fracture, induced fracture, infilling fracture and corrosion vug. Shang 741 intrusive rock reservoir can be divided into pore-vug compound type, pore fracture type, micro-pore and micro-fracture type. Physical properties parameters of the reservoir are computed and single-well fracture model and reservoir parameters model are established. 6. Various comprehensive methods of fracture prediction and recognition for fractured igneous reservoir are put forward. Adopting three-element (igneous facies, fracture motion and rock bending) geologic comprehensive reservoir evaluation technique and deep-shallow unconventional laterolog constrained inversion technique, lateral prediction of fractured reservoir such as Shang 741 is taken and nonhomogeneity quantification models of reservoirs are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We begin our studies to make the best of information of seismic data and carry out the description of cracks parameters by extracting anisotropic information. The researching contents are: (1) velocity and polarization anomaly of seismic wave (qP and qSV wave) in weak anisotropic media; (2) reflection seismic synthetic record in anisotropic media; (3) multiple scattering induced by cracks; (4) anisotropic structure inversion and velocity reconstruction with VSP (Vertical Seismic Profile) data; (5) multi-parameters analysis of anisotropy in time-domain and depth-domain. Then we obtain results as follows: (1) We achieve approximate relation of qP and qSV wave's velocity and polarization property in weak anisotropic media. At the same time, we calculate anisotropic velocity factors and polarization anomaly of several typical sedimentary rocks. The results show there are different anisotropic velocity factors and polarization anomaly in different rocks. It is one of the primary theoretical foundation which is expected to identify lithology; (2) We calculate reflection seismic synthetic record with theoretical model; (3) We simulate scattering induced by cracks with Boundary Element Method. Numerical studies show that in the presence of cracks; spatial and scale-length distributions are important and cannot be ignored in modeling cracked solids; (4) From traveltimes information of VSP data, we study the velocity parameter inversion of seismic wave under isotropic and anisotropic models, and its result indicate that the inversion imaging under anisotropic model will not destroy the original features of isotropic model, but it will bring on some bigger error if we adopt the method of isotropic model for anisotropic model data. Further more, basing on the study we develop the CDP mapping technology of reflecting structure under isotropic and anisotropic models, and we process real data as a trial of the methods; (5) We study the problem of initial model reconstruction of anisotropic parameters structure represented by Anderson parameter in depth domain for surface data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the increasingly enlarged exploration target, deep target layer(especially for the reservoir of lava) is a potential exploration area. As well known, the reflective energy becomes weak because the seismic signals of reflection in deep layer are absorbed and attenuate by upper layer. Caustics and multi-values traveltime in wavefield are aroused by the complexity of stratum. The ratio of signal to noise is not high and the fold numbers are finite(no more than 30). All the factors above affect the validity of conventional processing methods. So the high S/N section of stack can't always be got with the conventional stack methods even if the prestack depth migration is used. So it is inevitable to develop another kind of stack method instead. In the last a few years, the differential solution of wave equation was hold up by the condition of computation. Kirchhoff integral method rose in the initial stages of the ninetieth decade of last century. But there exist severe problems in it, which is are too difficult to resolve, so new method of stack is required for the oil and gas exploration. It is natural to think about upgrading the traditionally physic base of seismic exploration methods and improving those widely used techniques of stack. On the other hand, great progress is depended on the improvement in the wave differential equation prestack depth migration. The algorithm of wavefield continuation in it is utilized. In combination with the wavefield extrapolation and the Fresnel zone stack, new stack method is carried out It is well known that the seismic wavefield observed on surface comes from Fresnel zone physically, and doesn't comes from the same reflection points only. As to the more complex reflection in deep layer, it is difficult to describe the relationship between the reflective interface and the travel time. Extrapolation is used to eliminate caustic and simplify the expression of travel time. So the image quality is enhanced by Fresnel zone stack in target. Based on wave equation, high-frequency ray solution and its character are given to clarify theoretical foundation of the method. The hyperbolic and parabolic travel time of the reflection in layer media are presented in expression of matrix with paraxial ray theory. Because the reflective wave field mainly comes from the Fresnel Zone, thereby the conception of Fresnel Zone is explained. The matrix expression of Fresnel zone and projected Fresnel zone are given in sequence. With geometrical optics, the relationship between object point in model and image point in image space is built for the complex subsurface. The travel time formula of reflective point in the nonuniform media is deduced. Also the formula of reflective segment of zero-offset and nonzero offset section is provided. For convenient application, the interface model of subsurface and curve surface derived from conventional stacks DMO stack and prestack depth migration are analyzed, and the problem of these methods was pointed out in aspects of using data. Arc was put forward to describe the subsurface, thereby the amount of data to stack enlarged in Fresnel Zone. Based on the formula of hyperbolic travel time, the steps of implementation and the flow of Fresnel Zone stack were provided. The computation of three model data shows that the method of Fresnel Zone stack can enhance the signal energy and the ratio of signal to noise effectively. Practical data in Xui Jia Wei Zhi, a area in Daqing oilfield, was processed with this method. The processing results showed that the ability in increasing S/N ratio and enhancing the continuity of weak events as well as confirming the deep configuration of volcanic reservoir is better than others. In deeper target layer, there exists caustic caused by the complex media overburden and the great variation of velocity. Travel time of reflection can't be exactly described by the formula of travel time. Extrapolation is bring forward to resolve the questions above. With the combination of the phase operator and differential operator, extrapolating operator adaptable to the variation of lateral velocity is provided. With this method, seismic records were extrapolated from surface to any different deptlis below. Wave aberration and caustic caused by the inhomogenous layer overburden were eliminated and multi-value curve was transformed into the curve.of single value. The computation of Marmousi shows that it is feasible. Wave field continuation extends the Fresnel Zone stack's application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receiver function method applied in researching the discontinuities in upper mantle was systematically studied in this paper. Using the theoretical receiver functions, the characteristics of P410S and P660S phases were analyzed, and the influencing factors for detection of these phases were discussed. The stability of receiver function was studied, and a new computational method of receiver function, RFSSMS (Receiver Function of Stack and Smooth of Multi seismic-records at a Single station), was put forward. We built initial reference velocity model for the media beneath each of 18 seismic stations respectively; then estimated the buried depths of 410-km and 660-km discontinuities(simply marked as '410' and '660') under the stations by using the arrive time differences of P410S and P660S with P. We developed a new receiver function inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion), to obtain the whole crust and upper mantle velocity structure and the depths of discontinuities beneath a station. The major works and results could be summarized as follows: (1) By analysis of the theoretical receiver functions with different velocity models and different ray parameters, we obtain the knowledge: The amplitudes of P410S and P660S phases are decreasing with the increasing of epicentral distance A , and the arrival time differences of these phases with P are shorter as A is longer. The multiple refracted and/or reflected waves yielded on Moho and the discontinuities in the crust interfere the identification of P410S. If existing LVZ under the lithosphere, some multiple waves caused by LVZ will interfere the identification of P410S. The multiple waves produced by discontinuity lied near 120km depth will mix with P410s phase in some range of epicentral distance; and the multiple waves concerned with the discontinuity lied near 210km depth will interfere the identification of P660S. The epicentral distance for P4i0s identification is limited, the upper limit is 80° . The identification of P660S is not restricted by the epicenter distance obviously. The identification of P410S and P6gos in the theoretical receiver functions is interfered weakly from the seismic wave attenuation caused by the media absorption if the Q value in a reasonable range. (2) The stability of receiver function was studied by using synthetic seismograms with different kind of noise. The results show that on the condition of high signal-noise-ratio of seismic records, the high frequency background noise and the low frequency microseism noise do not influence the calculating result of receiver function. But the media "scattering noise" influence the stability of receiver function. When the scattering effect reach some level, the identification of P4iOs and P66os is difficult in single receiver function which is yielded from only one seismic record. We provided a new method to calculate receiver function, that is, with a group of earthquake records, stacking the R and Z components respectively in the frequency domain, and weighted smooth the stacked Z component, then compute the complex spectrum ratio of R to Z. This method can improve the stability of receiver function and protrude the P4i0s and P66os in the receiver function curves. (3) 263 receiver functions were provided from 1364 three component broadband seismograms recorded at 18 stations in China and adjacent areas for the tele-earthquakes. The observed arrival time differences of P410S and P660S with P were obtained in these receiver functions. The initial velocity model for every station was built according to the prior research results. The buried depths of '410' and '660' under a station were acquired by the way of adjusting the depths of these two discontinuities in the initial velocity model until the theoretical arrival time differences of P410S and P660S with P well conformed to the observed. The results show an obvious lateral heterogeneity of buried depths of ' 410' and (660' . The depth of '410' is shallower beneath BJI, XAN, LZH and ENH, but deeper under QIZ and CHTO, and the average is 403km . The average depth of '660' is 663km, deeper under MDJ and MAJO, but shallower under QIZ and HYB. (4) For inversing the whole crust and upper mantle velocity structure, a new inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion) has- been developed here. The media beneath a station is divided into segments, then the velocity structure is inversed from receiver function from surface to deep successively. Using PGARFI, the multi reflection / refraction phases of shallower discontinuities are isolated from the first order refraction transform phase of deep discontinuity. The genetic algorithm with floating-point coding was used hi the inversion of every segment, and arithmetical crossover and non-uniform mutation technologies were employed in the genetic optimization. 10 independent inversions are completed for every segment, and 50 most excellent velocity models are selected according to the priority of fitness from all models produced in the inversion process. The final velocity structure of every segment is obtained from the weighted average of these 50 models. Before inversion, a wide range of velocity variation with depth and depth range of the main discontinuities are given according to priori knowledge. PGARFI was verified with numerical test and applied in the inversion of the velocity structure beneath HIA station down to 700km depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the large developments of the seismic sources theory, computing technologies and survey instruments, we can model and rebuild the rupture process of earthquakes more realistically. On which earthquake sources' properties and tectonic activities law are realized more clearly. The researches in this domain have been done in this paper as follows. Based on the generalized ray method, expressions for displacement on the surface of a half-space due to an arbitrary oriented shear and tensile dislocation are also obtained. Kinematically, fault-normal motion is equivalent to tensile faulting. There is some evidence that such motion occurs in many earthquakes. The expressions for static displacements on the surface of a layered half-space due to static point moment tensor source are given in terms of the generalized reflection and transmission coefficient matrix method. The validity and precision of the new method is illustrated by comparing the consistency of our results with the analytical solution given by Okada's code employing same point source and homogenous half-space model. The computed vertical ground displacement using the moment tensor solution of the Lanchang_Gengma earthquake displays considerable difference with that of a double couple component .The effect of a soft layer at the top of the homogenous half-space on a shallow normal-faulting earthquake is also analyzed. Our results show that more seismic information would be obtained utilizing seismic moment tensor source and layered half-space model. The rupture process of 1999 Chi-Chi, Taiwan, earthquake investigated by using co-seismic surface displacement GPS observations and far field P-wave records. In according to the tectonic analysis and distributions of aftershock, we introduce a three-segment bending fault planes into our model. Both elastic half-space models and layered-earth models to invert the distribution of co-seismic slip along the Chi-Chi earthquake rupture. The results indicate that the shear slip model can not fit horizontal and vertical co-seismic displacements together, unless we add the fault-normal motion (tensile component) in inversions. And then, the Chi Chi earthquake rupture process was obtained by inversion using the seismograms and GPS observations. Fault normal motions determined by inversion, concentrate on the shallow northern bending fault from Fengyuan to Shuangji where the surface earthquake ruptures reveal more complexity and the developed flexural slip folding structures than the other portions of the rupture zone For understanding the perturbation of surface displacements caused by near-surface complex structures, We have taken a numeric test to synthesize and inverse the surface displacements for a pop-up structure that is composed of a main thrust and a back thrust. Our result indicates that the pop-up structure, the typical shallow complex rupture that occurred in the northern bending fault zone form Fengyuan to Shuangji, can be modeled better by a thrust fault added negative tensile component than by a simple thrust fault. We interpret the negative tensile distributions, that concentrate on the shallow northern bending fault from Fengyuan to Shuangji, as a the synthetic effect including the complexities of property and geometry of rupture. The earthquake rupture process also reveal the more spatial and temporal complexities form Fenyuan to SHuangji. According to the three-components teleseismic records, the S-wave velocity structure beneath the 59 teleseismic stations of Taiwan obtained by using the transform function method and the SA techniques. The integrated results, the 3D crustal structure of Taiwan reveal that the thickest part of crustal local in the western Central Range. This conclusion is consistent with the result form the Bouguer gravity anomaly. The orogenic evolution of Taiwan is young period, and the developing foot of Central Range dose not in static balancing. The crustal of Taiwan stays in the course of dynamic equilibrium. The rupture process of 2003)2,24,Jiashi, Xinjiang earthquake was estimated by the finite fault model using far field broadband P wave records of CDSN and IRIS. The results indicate that the earthquake focal is north dip trust fault including some left-lateral strike slip. The focal mechanism of this earthquake is different form that of earthquakes occurred in 1997 and 1998, but similar to that of 1996, Artux, Xinjiang earthquake. We interpreted that the earthquake caused trust fault due to the Tarim basin pushing northward and orogeny of Tianshan mountain. In the end, give a brief of future research subject: Building the Real Time Distribute System for rupture process of Large Earthquakes Based on Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross well seismic technique is a new type of geophysical method, which observes the seismic wave of the geologic body by placing both the source and receiver in the wells. By applying this method, it averted the absorption to high-frequency component of seismic signal caused by low weathering layers, thus, an extremely high-resolution seismic signal can be acquired. And extremely fine image of cross well formations, structure, and reservoir can be achieved as well. An integrated research is conducted to the high-frequency S-wave and P-wave data and some other data to determine the small faults, small structure and resolving the issues concerning the thin bed and reservoir's connectivity, fluid distribution, steam injection and fracture. This method connects the high-resolution surface seismic, logging and reservoir engineering. In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a research is conducted on cross well seismic technology in general and its important issues in cross well seismic technology in particular. A technological series of integrated field acquisition, data processing and interpretation and its integrated application research were developed and this new method can be applied to oilfield development and optimizing oilfield development scheme. The contents and results in this paper are as listed follows: An overview was given on the status quo and development of the cross well seismic method and problems concerning the cross well seismic technology and the difference in cross well seismic technology between China and international levels; And an analysis and comparison are given on foreign-made field data acquisition systems for cross-well seismic and pointed out the pros and cons of the field systems manufactured by these two foreign companies and this is highly valuable to import foreign-made cross well seismic field acquisition system for China. After analyses were conducted to the geometry design and field data for the cross well seismic method, a common wave field time-depth curve equation was derived and three types of pipe waves were discovered for the first time. Then, a research was conducted on the mechanism for its generation. Based on the wave field separation theory for cross well seismic method, we believe that different type of wave fields in different gather domain has different attributes characteristics, multiple methods (for instance, F-K filtering and median filtering) were applied in eliminating and suppressing the cross well disturbances and successfully separated the upgoing and downgoing waves and a satisfactory result has been achieved. In the area of wave field numerical simulation for cross well seismic method, a analysis was conducted on conventional ray tracing method and its shortcomings and proposed a minimum travel time ray tracing method based on Feraiat theory in this paper. This method is not only has high-speed calculation, but also with no rays enter into "dead end" or "blinded spot" after numerous iterations and it is become more adequate for complex velocity model. This is first time that the travel time interpolation has been brought into consideration, a dynamic ray tracing method with shortest possible path has been developed for the first arrivals of any complex mediums, such as transmission, diffraction and refraction, etc and eliminated the limitation for only traveling from one node to another node and increases the calculation accuracy for minimum travel time and ray tracing path and derives solution and corresponding edge conditions to the fourth-order differential sonic wave equation. The final step is to calculate cross well seismic synthetics for given source and receivers from multiple geological bodies. Thus, real cross-well seismic wave field can be recognized through scientific means and provides important foundation to guide the cross well seismic field geometry designing. A velocity tomographic inversion of the least square conjugated gradient method was developed for cross well seismic velocity tomopgraphic inversion and a modification has been made to object function of the old high frequency ray tracing method and put forward a thin bed oriented model for finite frequency velocity tomographic inversion method. As the theory model and results demonstrates that the method is simple and effective and is very important in seismic ray tomographic imaging for the complex geological body. Based on the characteristics of the cross well seismic algorithm, a processing flow for cross well seismic data processing has been built and optimized and applied to the production, a good section of velocity tomopgrphic inversion and cross well reflection imaging has been acquired. The cross well seismic data is acquired from the depth domain and how to interprets the depth domain data and retrieve the attributes is a brand new subject. After research was conducted on synthetics and trace integration from depth domain for the cross well seismic data interpretation, first of all, a research was conducted on logging constraint wave impedance of cross well seismic data and initially set up cross well seismic data interpretation flows. After it applied and interpreted to the cross well seismic data and a good geological results has been achieved in velocity tomographic inversion and reflection depth imaging and a lot of difficult problems for oilfield development has been resolved. This powerful, new method is good for oilfield development scheme optimization and increasing EOR. Based on conventional reservoir geological model building from logging data, a new method is also discussed on constraining the accuracy of reservoir geological model by applying the high resolution cross well seismic data and it has applied to Fan 124 project and a good results has been achieved which it presents a bight future for the cross well seismic technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic survey is the most effective prospecting geophysical method during exploration and development of oil/gas. The structure and the lithology of the geological body become increasingly complex now. So it must assure that the seismic section own upper resolution if we need accurately describe the targets. High signal/noise ratio is the precondition of high-resolution. As one important seismic data processing method, Stacking is an effective means to suppress the records noise. Broadening area of surface stacked is more important to enhance genuine reflection signals and suppressing unwanted energy in the form of coherent and random ambient noise. Common reflection surface stack is a macro-model independent seismic imaging method. Based on the similarity of CRP trace gathers in one coherent zone, CRS stack effectively improves S/N ratio by using more CMP trace gathers to stack. It is regarded as one important method of seismic data processing. Performing CRS stack depends on three attributes. However, the equation of CRS is invalid under condition of great offset. In this thesis, one method based on velocity model in depth domain is put forward. Ray tracing is used to determine the traveltime of CRP in one common reflection surface by the least squares method to regress the equation of CRS. Then we stack in the coherent seismic data set according to the traveltime, and get the zero offset section. In the end of flowchart of implementing CRS stack, one method using the dip angle to enhance the ratio of S/N is used. Application of the method on synthetic examples and field seismic records, the results of this method show an excellent performance of the algorithm both in accuracy and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophones being inside the well, VSP can record upgoing and downgoing P waves, upgoing and downgoing S waves simultaneously.Aiming at overcoming the shortages of the known VSP velocity tomography , attenuation tomography , inverse Q filtering and VSP image method , this article mainly do the following jobs:CD; I do the common-source-point raytracing by soving the raytracing equations with Runge-Kutta method, which can provide traveltime , raypath and amplitude for VSP velocity tomography , attenuation tomography and VSP multiwave migration.(D. The velocity distribution can be inversed from the difference between the computed traveltime and the observed traveltime of the VSP downgoing waves. I put forward two methods: A. VSP building-velocity tomography method that doesn't lie on the layered model from which we can derive the slowness of the grids' crunodes . B. deformable layer tomography method from which we can get the location of the interface if the layer's velocity is known..(3). On the basis of the velocity tomography , using the attenuation information shown by the VSP seismic wave , we can derive the attenuation distribution of the subsurface. I also present an algorithm to solve the inverse Q filtering problem directly and accurately from the Q modeling equation . Numerical results presented have shown that our algorithm gives reliable results . ?. According to the theory that the transformed point is the point where the four kinds of wave come into being , and where the stacked energy will be the largest than at other points . This article presents a VSP multiwave Kirchhoff migration method . Application on synthetic examples and field seismic records have shown that the algorithm gives reliable results . (5). When the location of the interface is determined and the velocity of the P wave and S wave is known , we can obtain the transmittivity and reflection coefficient 5 thereby we can gain the elastic parameters . This method is also put into use derive good result.Above all, application on models and field seismic records show that the method mentioned above is efficient and accurate .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In exploration seismology, the geologic target of oil and gas reservoir in complex medium request the high accuracy image of the structure and lithology of the medium. So the study of the prestack image and the elastic inversion of seismic wave in the complex medium come to the leading edge. The seismic response measured at the surface carries two fundamental pieces of information: the propagation effects of the medium and the reflections from the different layer boundaries in the medium. The propagation represent the low-wavenumber component of the medium, it is so-called the trend or macro layering, whereas the reflections represent the high-wavenumber component of the medium, it is called the detailed or fine layering. The result of migration velocity analysis is the resolution of the low-wavenumber component of the medium, but the prestack elastic inversion provided the resolution of the high-wavvenumber component the medium. In the dissertation, the two aspects about the migration velocity estimation and the elastic inversion have been studied.Firstly, any migration velocity analysis methods must include two basic elements: the criterion that tell us how to know whether the model parameters are correct and the updating that tell us how to update the model parameters when they are incorrect, which are effected on the properties and efficiency of the velocity estimation method. In the dissertation, a migration velocity analysis method based on the CFP technology has been presented in which the strategy of the top-down layer stripping approach are adapted to avoid the difficult of the selecting reduce .The proposed method has a advantage that the travel time errors obtained from the DTS panel are defined directly in time which is the difference with the method based on common image gather in which the residual curvature measured in depth should be converted to travel time errors.In the proposed migration velocity analysis method, the four aspects have been improved as follow:? The new parameterization of velocity model is provided in which the boundaries of layers are interpolated with the cubic spline of the control location and the velocity with a layer may change along with lateral position but the value is calculated as a segmented linear function of the velocity of the lateral control points. The proposed parameterization is suitable to updating procedure.? The analytical formulas to represent the travel time errors and the model parameters updates in the t-p domain are derived under local lateral homogeneous. The velocity estimations are iteratively computed as parametric inversion. The zero differential time shift in the DTS panel for each layer show the convergence of the velocity estimation.? The method of building initial model using the priori information is provided to improve the efficiency of velocity analysis. In the proposed method, Picking interesting events in the stacked section to define the boundaries of the layers and the results of conventional velocity analysis are used to define the velocity value of the layers? An interactive integrate software environment with the migration velocity analysis and prestack migration is built.The proposed method is firstly used to the synthetic data. The results of velocity estimation show both properties and efficiency of the velocity estimation are very good.The proposed method is also used to the field data which is the marine data set. In this example, the prestack and poststack depth migration of the data are completed using the different velocity models built with different method. The comparison between them shows that the model from the proposed method is better and improves obviously the quality of migration.In terms of the theoretical method of expressing a multi-variable function by products of single-variable functions which is suggested by Song Jian (2001), the separable expression of one-way wave operator has been studied. A optimization approximation with separable expression of the one-way wave operator is presented which easily deal with the lateral change of velocity in space and wave number domain respectively and has good approach accuracy. A new prestack depth migration algorithm based on the optimization approximation separable expression is developed and used to testing the results of velocity estimation.Secondly, according to the theory of the seismic wave reflection and transmission, the change of the amplitude via the incident angle is related to the elasticity of medium in the subsurface two-side. In the conventional inversion with poststack datum, only the information of the reflection operator at the zero incident angles can be used. If the more robust resolutions are requested, the amplitudes of all incident angles should be used.A natural separable expression of the reflection/transmission operator is represented, which is the sum of the products of two group functions. One group function vary with phase space whereas other group function is related to elastic parameters of the medium and geological structure.By employing the natural separable expression of the reflection/transmission operator, the method of seismic wave modeling with the one-way wave equation is developed to model the primary reflected waves, it is adapt to a certain extent heterogeneous media and confirms the accuracy of AVA of the reflections when the incident angle is less than 45'. The computational efficiency of the scheme is greatly high.The natural separable expression of the reflection/transmission operator is also used to construct prestack elastic inversion algorithm. Being different from the AVO analysis and inversion in which the angle gathers formed during the prstack migration are used, the proposed algorithm construct a linear equations during the prestack migration by the separable expression of the reflection/transmission operator. The unknowns of the linear equations are related to the elasticity of the medium, so the resolutions of them provided the elastic information of the medium.The proposed method of inversion is the same as AVO inversion in , the difference between them is only the method processing the amplitude via the incident angle and computational domain.