948 resultados para sand-burial
Resumo:
The northwestern Cascadia Basin of western North America accumulated high-sedimentation-rate sequences during the Pleistocene sea-level low-stands. The continental shelf was largely exposed at that time, and rivers and estuaries delivered large sediment fluxes directly to the deep ocean. The IODP EXP1301 core, which was taken from the middle portion of the Cascadia Basin, is well preserved and exhibits the deeper and - more distal sedimentary facies. The lithology in this location is composed of two units, 1) hemipelagic mud with a thin sand layer and 2) thick, coarsening upward silt-sand turbidites with a small proportion of granules at the top. We will focus on the detailed sand-grain proportions in order to understand the origin of these sediments. We determined the modal proportions of the heavy minerals, and the chemical composition of olivine and orthopyroxene in fourteen samples. These are characterized by an abundance of amphibole, pyroxenes and epidote, and the presence of minerals derived from peridotite. There is no drastic change in the modal and mineral compositions of the sands and silts between the turbidite and hemipelagic sequences. There were two probable drainage systems on the continent, the Frazer and Columbia rivers, which shed turbidites into the Cascadia Basin after 1.6 Ma, especially at 0.46-0.76 Ma. Based on a comparison of the modal and mineral compositions, the Northern Cascadia Basin has been supplied with sediments, mainly from the Frazer River, through the Straits of Juan de Fuca, by Pleistocene to Holocene turbidites.
Resumo:
Qualitative petrographic study of selected clastic horizons within the Eocene section of Hole 516F has revealed the presence of abundant fine-grained lithic fragments, probably volcanic, along with coarser fragments of quartz and feldspar apparently derived from a nearby plutonic terrain. In detail, poor sorting, presence of graded bedding, and an abundance of clay suggest these are turbidite horizons locally derived from a mixed volcanic/plutonic terrain, possibly with some direct contribution from contemporary volcanic ash falls. A progressive increase in plutonic versus volcanic components with time is, however, more consistent with an erosional origin for most of this material. Unusual euhedral dark biotite is abundant in several of the lower clastic horizons; it is most easily interpreted as microphenocrysts weathered in situ out of alkalic volcanic ash. Biotite separated from Sample 516F-76-4,107-115 cm, has been dated by the K-Ar method at about 46 Ma. Alkaline volcanoes active on the Rio Grande Rise in the middle Eocene would be the most probable source of this ash and would be consistent with other evidence for potassic, alkaline volcanism along the Rio Grande Rise and at the Tristan da Cunha hot spot.
Resumo:
The Middle America active continental margin is the best-sampled active plate margin to date, having been drilled during Legs 84, 67, and 66. With nine sites drilled on the continental slope of Guatemala and an additional site drilled on the Costa Rican slope, a summary of slope sediments and sedimentary processes can be made. Sediments are easily subdivided into a thick apron of Neogene and Quaternary volcanically derived hemipelagic and turbidite mud and mudstone and a thinner, more varied assemblage of mostly Paleogene mudstone, radiolarian mudstone, and limestone. This latter assemblage may contain hiatuses or be completely lacking between slope deposits and basement. Cores from the foot of the continental slope (Core 567A-19) consist of Campanian micrite. The pre-Neogene section is much thicker and of more terrigenous provenance beneath the forearc basin landward of the forearc structural high than on the continental slope. Sedimentary processes of the Neogene and Quaternary slope sediments include reworking of hemipelagic and turbidite deposits. Redeposition by slumping, plastic flow, and turbidity current-documentable through benthic foraminiferal analysis-occurs in intracanyon and canyon settings. Erosion by slumping and by turbidity current and deposition of mud or sand in canyons and in local depressions on the continental slope and different rates of sediment accumulation result in dramatic thickness variations of lithologic units over small distances in localized pockets of sand in small filled canyons on the slope or in sediment ponds, and in high-relief basement topography. The age of sediment overlying igneous basement ranges from Cretaceous to Quaternary. Gas hydrate was visible or inferred present at every site drilled during Leg 84. Nevertheless, except for a small amount in the last core, it was not recovered in sufficient quantities to be visible at Site 568, a site specifically chosen for the study of hydrate and located near Site 496, which was abandoned during Leg 67 because of the dangerous abundance of hydrates. The association of hydrate with porous, coarser sediment results in a distribution as localized and unpredictable as the slope sands off Guatemala, which do not occur in beds coherent enough to produce acoustic reflection. Although the normal lithologic section at Sites 567 and 496 limits the volume of sediment that could be part of an accretionary prism offshore Guatemala and the volume of sediment in the Trench axis is not sufficient to argue for significant accumulation of Cocos Plate sediments, the varied lithology and attenuated thickness of pre-Neogene sediment seaward of the forearc structural high do not exclude earlier accretion from the history of the Guatemalan continental margin.
Resumo:
The aim of the present study is to investigate directional asymmetric properties and internal structures of the bedforms on the intertidal sand bars in comparison with the migration problems of the sand bodies developed in the channel systems of the tidal basin off the west coast of Schleswig-Holstein. The tidal channel sand bodies studied have 'V'-shaped outlines and are asymmetric in cross-section. Based on such knowledge it was hoped to understand and find possible factors for application to recent and ancient tidal depositional environments. The V-shaped intertidal channel sand bodies developed in the tidal environments between Sylt and Föhr Island are constantly migrating sand bars. The migration directions are in good agreement with the resultant vector mean directions of internal cross-stratification structures of asymmetric sedimentary bedforms. Finally, it is shown that the orientation of the apex of V-shaped sand bar as an equilibrium form alone can not indicate the migration direction, but that the orientation of the resultant vector mean of internal structures of sedimentary bedforms does indicate the migration direction. Based on the analyses of textural parameters of the migrating intertidal bar sands, it seems that sands of typical intertidal sand bars are negatively skewed and well sorted. The high rounding of quarz sand grains of these tidal channel sand bars seems to be an additional characteristical criterion for tidal depositional environments, as also indicated by Balazs and Klein (1972).
Resumo:
Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and population parameters. In a full factorial field experiment, burial level (5-20cm) and burial duration (4-16 weeks) were manipulated. Negative effects were visible even at the lowest burial level (5 cm) and shortest duration (4 weeks), with increasing effects over time and burial level. Buried seagrasses showed higher shoot mortality, delayed growth and flowering and lower carbohydrate storage. The observed effects will likely have an impact on next year's survival of buried plants. Our results have implications for the management of this important coastal plant.
Resumo:
At Site 582, DSDP Leg 87, turbidites about 560 m thick were recovered from the floor of the Nankai Trough. A turbidite bed is typically composed of three subdivisions: a lower graded sand unit, an upper massive silt unit, and an uppermost Chondrites burrowed silt unit. The turbidites intercalate with bluish gray hemipelagic mud which apparently accumulated below the calcite compensation depth. In order to investigate the nature and provenance of the turbidites, we studied the grain orientation, based on magnetic fabric measurements and thin-section grain counting, and grain size, using a photo-extinction settling tube and detrital modal analysis. The following results were obtained: (1) grain orientation analysis indicates that the turbidity current transport parallels the trench axis, predominantly from the northeast; (2) Nankai Trough turbidites generally decrease in grain size to the southwest; (3) turbidite sands include skeletal remains indicative of fresh-water and shallow-marine environments; and (4) turbidites contain abundant volcanic components, and their composition is analogous to the sediments of the Fuji River-Suruga Bay area. Considering other evidence, such as physiography and geometry of trench fill, we conclude that the turbidites of Site 582 as well as Site 583 were derived predominantly from the mouth of Fuji River and were transported through the Suruga Trough to the Nankai Trough, a distance of some 700 km. This turbidite transport system has tectonic implications: (1) the filling of the Nankai Trough is the direct consequence of the Izu collision in Pliocene- Pleistocene times; (2) the accretion of trench fill at the trench inner slope observed in the Nankai Trough is controlled by collision tectonics; and (3) each event of turbidite deposition may be related to a Tokai mega-earthquake.
Resumo:
Buried snowpack deposits are found within the McMurdo Dry Valleys of Antarctica, which offers the opportunity to study these layered structures of sand and ice within a polar desert environment. Four discrete buried snowpacks are studied within Pearse Valley, Antarctica, through in situ observations, sample analyses, O-H isotope measurements and numerical modelling of snowpack stability and evolution. The buried snowpack deposits evolve throughout the year and undergo deposition, melt, refreeze, and sublimation. We demonstrate how the deposition and subsequent burial of snow can preserve the snowpacks in the Dry Valleys. The modelled lifetimes of the buried snowpacks are dependent upon subsurface stratigraphy but are typically less than one year if the lag thickness is less than c. 7 cm and snow thickness is less than c. 10 cm, indicating that some of the Antarctic buried snowpacks form annually. Buried snowpacks in the Antarctic polar desert may serve as analogues for similar deposits on Mars and may be applicable to observations of the north polar erg, buried ice at the Mars Phoenix landing site, and observations of buried ice throughout the martian Arctic. Numerical modelling suggests that seasonal snows and subsequent burial are not required to preserve the snow and ice on Mars.
Resumo:
The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.