950 resultados para root mean square roughness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset consists of 2D footprints of the buildings in the metropolitan Boston area, based on tiles in the orthoimage index (orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 237890, 237894, 237898, 237902, 241890, 241894, 241898, 241902, 245898, 245902). This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). Roof height and footprint elevation attributes (derived from 1-meter resolution LIDAR (LIght Detection And Ranging) data) are included as part of each building feature. This data can be combined with other datasets to create 3D representations of buildings and the surrounding environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le traumatisme craniocérébral léger (TCCL) a des effets complexes sur plusieurs fonctions cérébrales, dont l’évaluation et le suivi peuvent être difficiles. Les problèmes visuels et les troubles de l’équilibre font partie des plaintes fréquemment rencontrées après un TCCL. En outre, ces problèmes peuvent continuer à affecter les personnes ayant eu un TCCL longtemps après la phase aiguë du traumatisme. Cependant, les évaluations cliniques conventionnelles de la vision et de l’équilibre ne permettent pas, la plupart du temps, d’objectiver ces symptômes, surtout lorsqu’ils s’installent durablement. De plus, il n’existe pas, à notre connaissance, d’étude longitudinale ayant étudié les déficits visuels perceptifs, en tant que tels, ni les troubles de l’équilibre secondaires à un TCCL, chez l’adulte. L’objectif de ce projet était donc de déterminer la nature et la durée des effets d’un tel traumatisme sur la perception visuelle et sur la stabilité posturale, en évaluant des adultes TCCL et contrôles sur une période d’un an. Les mêmes sujets, exactement, ont participé aux deux expériences, qui ont été menées les mêmes jours pour chacun des sujets. L’impact du TCCL sur la perception visuelle de réseaux sinusoïdaux définis par des attributs de premier et de second ordre a d’abord été étudié. Quinze adultes diagnostiqués TCCL ont été évalués 15 jours, 3 mois et 12 mois après leur traumatisme. Quinze adultes contrôles appariés ont été évalués à des périodes identiques. Des temps de réaction (TR) de détection de clignotement et de discrimination de direction de mouvement ont été mesurés. Les niveaux de contraste des stimuli de premier et de second ordre ont été ajustés pour qu’ils aient une visibilité comparable, et les moyennes, médianes, écarts-types (ET) et écarts interquartiles (EIQ) des TR correspondant aux bonnes réponses ont été calculés. Le niveau de symptômes a également été évalué pour le comparer aux données de TR. De façon générale, les TR des TCCL étaient plus longs et plus variables (plus grands ET et EIQ) que ceux des contrôles. De plus, les TR des TCCL étaient plus courts pour les stimuli de premier ordre que pour ceux de second ordre, et plus variables pour les stimuli de premier ordre que pour ceux de second ordre, dans la condition de discrimination de mouvement. Ces observations se sont répétées au cours des trois sessions. Le niveau de symptômes des TCCL était supérieur à celui des participants contrôles, et malgré une amélioration, cet écart est resté significatif sur la période d’un an qui a suivi le traumatisme. La seconde expérience, elle, était destinée à évaluer l’impact du TCCL sur le contrôle postural. Pour cela, nous avons mesuré l’amplitude d’oscillation posturale dans l’axe antéropostérieur et l’instabilité posturale (au moyen de la vitesse quadratique moyenne (VQM) des oscillations posturales) en position debout, les pieds joints, sur une surface ferme, dans cinq conditions différentes : les yeux fermés, et dans un tunnel virtuel tridimensionnel soit statique, soit oscillant de façon sinusoïdale dans la direction antéropostérieure à trois vitesses différentes. Des mesures d’équilibre dérivées de tests cliniques, le Bruininks-Oseretsky Test of Motor Proficiency 2nd edition (BOT-2) et le Balance Error Scoring System (BESS) ont également été utilisées. Les participants diagnostiqués TCCL présentaient une plus grande instabilité posturale (une plus grande VQM des oscillations posturales) que les participants contrôles 2 semaines et 3 mois après le traumatisme, toutes conditions confondues. Ces troubles de l’équilibre secondaires au TCCL n’étaient plus présents un an après le traumatisme. Ces résultats suggèrent également que les déficits affectant les processus d’intégration visuelle mis en évidence dans la première expérience ont pu contribuer aux troubles de l’équilibre secondaires au TCCL. L’amplitude d’oscillation posturale dans l’axe antéropostérieur de même que les mesures dérivées des tests cliniques d’évaluation de l’équilibre (BOT-2 et BESS) ne se sont pas révélées être des mesures sensibles pour quantifier le déficit postural chez les sujets TCCL. L’association des mesures de TR à la perception des propriétés spécifiques des stimuli s’est révélée être à la fois une méthode de mesure particulièrement sensible aux anomalies visuomotrices secondaires à un TCCL, et un outil précis d’investigation des mécanismes sous-jacents à ces anomalies qui surviennent lorsque le cerveau est exposé à un traumatisme léger. De la même façon, les mesures d’instabilité posturale se sont révélées suffisamment sensibles pour permettre de mesurer les troubles de l’équilibre secondaires à un TCCL. Ainsi, le développement de tests de dépistage basés sur ces résultats et destinés à l’évaluation du TCCL dès ses premières étapes apparaît particulièrement intéressant. Il semble également primordial d’examiner les relations entre de tels déficits et la réalisation d’activités de la vie quotidienne, telles que les activités scolaires, professionnelles ou sportives, pour déterminer les impacts fonctionnels que peuvent avoir ces troubles des fonctions visuomotrice et du contrôle de l’équilibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structure from Motion (SfM) is a new form of photogrammetry that automates the rendering of georeferenced 3D models of objects using digital photographs and independently surveyed Ground Control Points (GCPs). This project seeks to quantify the error found in Digital Elevation Models (DEMs) produced using SfM. I modeled a rockslide found at the Cadman Quarry (Monroe, Washington) because the surface is vegetation-free, which is ideal for SfM and Terrestrial LiDAR Scanner (TLS) surveys. By using SfM, TLS, and GPS positioning at the same time, I attempted to find the deviation in the SfM model from the TLS model and GPS points. Using the deviation, I found the Root-Mean-Square Error (RMSE) between the SfM DEM and GPS positions. The RMSE of the SfM model when compared to surveyed GPS points is 17cm. I propagated the uncertainty of the GPS points with the RMSE of the SfM model to find the uncertainty of the SfM model compared to the NAD 1984 datum. The uncertainty of the SfM model compared to the NAD 1984 is 27cm. This study did not produce a model from the TLS that had sufficient resolution on horizontal surfaces to compare to surveyed GPS points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Cross-sectional study. Objective. This study compared neck muscle activation patterns during and after a repetitive upper limb task between patients with idiopathic neck pain, whiplash-associated disorders, and controls. Summary of Background Data. Previous studies have identified altered motor control of the upper trapezius during functional tasks in patients with neck pain. Whether the cervical flexor muscles demonstrate altered motor control during functional activities is unknown. Methods. Electromyographic activity was recorded from the sternocleidomastoid, anterior scalenes, and upper trapezius muscles. Root mean square electromyographic amplitude was calculated during and on completion of a functional task. Results. A general trend was evident to suggest greatest electromyograph amplitude in the sternocleidomastoid, anterior scalenes, and left upper trapezius muscles for the whiplash-associated disorders group, followed by the idiopathic group, with lowest electromyographic amplitude recorded for the control group. A reverse effect was apparent for the right upper trapezius muscle. The level of perceived disability ( Neck Disability Index score) had a significant effect on the electromyographic amplitude recorded between neck pain patients. Conclusions. Patients with neck pain demonstrated greater activation of accessory neck muscles during a repetitive upper limb task compared to asymptomatic controls. Greater activation of the cervical muscles in patients with neck pain may represent an altered pattern of motor control to compensate for reduced activation of painful muscles. Greater perceived disability among patients with neck pain accounted for the greater electromyographic amplitude of the superficial cervical muscles during performance of the functional task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been little investigation into whether or not differences exist in the nature of physical impairment associated with neck pain of whiplash and insidious origin. This study examined the neck flexor synergy during performance of the cranio-cervical flexion test, a test targeting the action of the deep neck flexors. Seventy-five volunteer subjects participated in this study and were equally divided between Group 1, asymptomatic control subjects, Group 2, subjects with insidious onset neck pain and Group 3, subjects with neck pain following a whiplash injury. The cranio-cervical flexion test was performed in five progressive stages of increasing cranio-cervical flexion range. Subjects' performance was guided by feedback from a pressure sensor inserted behind the neck which monitored the slight flattening of the cervical lordosis which occurs with the contraction of longus colli. Myoelectric signals (EMG) were detected from the muscles during performance of the test. The results indicated that both the insidious onset neck pain and whiplash groups had higher measures of EMG signal amplitude (normalized root mean square) in the sternocleidomastoid during each stage of the test compared to the control subjects (all P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the most informative sampling time(s) providing a precise prediction of tacrolimus area under the concentration-time curve (AUC). Fifty-four concentration-time profiles of tacrolimus from 31 adult liver transplant recipients were analyzed. Each profile contained 5 tacrolimus whole-blood concentrations (predose and 1, 2, 4, and 6 or 8 hours postdose), measured using liquid chromatography-tandem mass spectrometry. The concentration at 6 hours was interpolated for each profile, and 54 values of AUC(0-6) were calculated using the trapezoidal rule. The best sampling times were then determined using limited sampling strategies and sensitivity analysis. Linear mixed-effects modeling was performed to estimate regression coefficients of equations incorporating each concentration-time point (C0, C1, C2, C4, interpolated C5, and interpolated C6) as a predictor of AUC(0-6). Predictive performance was evaluated by assessment of the mean error (ME) and root mean square error (RMSE). Limited sampling strategy (LSS) equations with C2, C4, and C5 provided similar results for prediction of AUC(0-6) (R-2 = 0.869, 0.844, and 0.832, respectively). These 3 time points were superior to C0 in the prediction of AUC. The ME was similar for all time points; the RMSE was smallest for C2, C4, and C5. The highest sensitivity index was determined to be 4.9 hours postdose at steady state, suggesting that this time point provides the most information about the AUC(0-12). The results from limited sampling strategies and sensitivity analysis supported the use of a single blood sample at 5 hours postdose as a predictor of both AUC(0-6) and AUC(0-12). A jackknife procedure was used to evaluate the predictive performance of the model, and this demonstrated that collecting a sample at 5 hours after dosing could be considered as the optimal sampling time for predicting AUC(0-6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In young adults, improvements in the rate of force development as a result of resistance training are accompanied by increases in neural drive in the very initial phase of muscle activation. The purpose of this experiment was to determine if older adults also exhibit similar adaptations in response to rate of force development (RFD) training. Eight young (21-35 years) and eight older (60-79 years) adults were assessed during the production of maximum rapid contractions, before and after four weeks of progressive resistance training for the elbow flexors. Young and older adults exhibited significant increases (P< 0.01) in peak RFD, of 25.6% and 28.6% respectively. For both groups the increase in RFD was accompanied by an increase in the root mean square (RMS) amplitude and in the rate of rise (RER) in the electromyogram (EMG) throughout the initial 100 ms of activation. For older adults, however, this training response was only apparent in the brachialis and brachioradialis muscles. This response was not observed in surface EMG recorded from the biceps brachii muscle during either RFD testing or throughout training, nor was it observed in the pronator teres muscle. The minimal adaptations observed for older adults in the bifunctional muscles biceps brachii and pronator teres are considered to indicate a compromise of the neural adaptations older adults might experience in response to resistance training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SFTI-1 is a novel 14 amino acid peptide comprised of a circular backbone constrained by three proline residues, a hydrogen-bond network, and a single disulfide bond. It is the smallest and most potent known Bowman-Birk trypsin inhibitor and the only one with a cyclic peptidic backbone. The solution structure of [ABA(3,11)]SFTI-1, a disulfide-deficient analogue of SFTI-1, has been determined by H-1 NMR spectroscopy. The lowest energy structures of native SFTI-1 and [ABA(3,11)]SFTI-1 are similar and superimpose with a root-mean-square deviation over the backbone and heavy atoms of 0.26 +/- 0.09 and 1.10 +/- 0.22 Angstrom, respectively. The disulfide bridge in SFTI-1 was found to be a minor determinant for the overall structure, but its removal resulted in a slightly weakened hydrogen-bonding network. To further investigate the role of the disulfide bridge, NMR chemical shifts for the backbone H-alpha protons of two disulfide-deficient linear analogues of SFTI-1, [ABA(3,11)]SFTI-1[6,5] and [ABA(3,11)]SFTI-1[1,14] were measured. These correspond to analogues of the cleavage product of SFTI-1 and a putative biosynthetic precursor, respectively. In contrast with the cyclic peptide, it was found that the disulfide bridge is essential for maintaining the structure of these open-chain analogues. Overall, the hydrogen-bond network appears to be a crucial determinant of the structure of SFTI-1 analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Lean bodyweight (LBW) has been recommended for scaling drug doses. However, the current methods for predicting LBW are inconsistent at extremes of size and could be misleading with respect to interpreting weight-based regimens. Objective: The objective of the present study was to develop a semi-mechanistic model to predict fat-free mass (FFM) from subject characteristics in a population that includes extremes of size. FFM is considered to closely approximate LBW. There are several reference methods for assessing FFM, whereas there are no reference standards for LBW. Patients and methods: A total of 373 patients (168 male, 205 female) were included in the study. These data arose from two populations. Population A (index dataset) contained anthropometric characteristics, FFM estimated by dual-energy x-ray absorptiometry (DXA - a reference method) and bioelectrical impedance analysis (BIA) data. Population B (test dataset) contained the same anthropometric measures and FFM data as population A, but excluded BIA data. The patients in population A had a wide range of age (18-82 years), bodyweight (40.7-216.5kg) and BMI values (17.1-69.9 kg/m(2)). Patients in population B had BMI values of 18.7-38.4 kg/m(2). A two-stage semi-mechanistic model to predict FFM was developed from the demographics from population A. For stage 1 a model was developed to predict impedance and for stage 2 a model that incorporated predicted impedance was used to predict FFM. These two models were combined to provide an overall model to predict FFM from patient characteristics. The developed model for FFM was externally evaluated by predicting into population B. Results: The semi-mechanistic model to predict impedance incorporated sex, height and bodyweight. The developed model provides a good predictor of impedance for both males and females (r(2) = 0.78, mean error [ME] = 2.30 x 10(-3), root mean square error [RMSE] = 51.56 [approximately 10% of mean]). The final model for FFM incorporated sex, height and bodyweight. The developed model for FFM provided good predictive performance for both males and females (r(2) = 0.93, ME = -0.77, RMSE = 3.33 [approximately 6% of mean]). In addition, the model accurately predicted the FFM of subjects in population B (r(2) = 0.85, ME -0.04, RMSE = 4.39 [approximately 7% of mean]). Conclusions: A semi-mechanistic model has been developed to predict FFM (and therefore LBW) from easily accessible patient characteristics. This model has been prospectively evaluated and shown to have good predictive performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of instrument realignment and angular misalignment during the clinical determination of wavefront aberrations by simulation in model eyes. Setting: Aston Academy of Life Sciences, Aston University, Birmingham, United Kingdom. Methods: Six model eyes were examined with wavefront-aberration-supported cornea ablation (WASCA) (Carl Zeiss Meditec) in 4 sessions of 10 measurements each: sessions 1 and 2, consecutive repeated measures without realignment; session 3, realignment of the instrument between readings; session 4, measurements without realignment but with the model eye shifted 6 degrees angularly. Intersession repeatability and the effects of realignment and misalignment were obtained by comparing the measurements in the various sessions for coma, spherical aberration, and higher-order aberrations (HOAs). Results: The mean differences between the 2 sessions without realignment of the instrument were 0.020 μm ± 0.076 (SD) for Z3 - 1(P = .551), 0.009 ± 0.139 μm for Z3 1(P = .877), 0.004 ± 0.037 μm for Z4 0 (P = .820), and 0.005 ± 0.01 μm for HO root mean square (RMS) (P = .301). Differences between the nonrealigned and realigned instruments were -0.017 ± 0.026 μm for Z3 - 1(P = .159), 0.009 ± 0.028 μm for Z3 1 (P = .475), 0.007 ± 0.014 μm for Z4 0(P = .296), and 0.002 ± 0.007 μm for HO RMS (P = 0.529; differences between centered and misaligned instruments were -0.355 ± 0.149 μm for Z3 - 1 (P = .002), 0.007 ± 0.034 μm for Z3 1(P = .620), -0.005 ± 0.081 μm for Z4 0(P = .885), and 0.012 ± 0.020 μm for HO RMS (P = .195). Realignment increased the standard deviation by a factor of 3 compared with the first session without realignment. Conclusions: Repeatability of the WASCA was excellent in all situations tested. Realignment substantially increased the variance of the measurements. Angular misalignment can result in significant errors, particularly in the determination of coma. These findings are important when assessing highly aberrated eyes during follow-up or before surgery. © 2007 ASCRS and ESCRS.