979 resultados para rib graft
Resumo:
The BCR-ABL fusion proteins, b2a2 and b3a2, are potential targets for a beneficial graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation for chronic myeloid leukemia (CML). This study demonstrates that CD4(+) T cells specific to the b2a2 peptide can be generated from a normal allogeneic stem cell transplant donor after stimulation with monocyte-derived dendritic cells (Mo-DC) using culture conditions applicable to clinical use. Stimulation of donor T-cell enriched mononuclear cells (MNC) with b2a2-pulsed Mo-DC produced approximately 3 x 10(9) b2a2-specific CD4(+) T cells. The CD4(+) T cells were HLA-DR7 restricted. These results confirm that the generation of donor derived b2a2-specific T cells for clinical use is feasible and warrants clinical testing after stem cell transplantation.
Resumo:
Keratinocyte Growth factor (KGF) is an epithelial cell growth factor of the fibroblast growth factor family and is produced by fibroblasts and microvascular endothelium in response to proinflammatory cytokines and steroid hormones. KGF is a heparin binding growth factor that exerts effects on epithelial cells in a paracrine fashion through interaction with KGF receptors. Preclinical data has demonstrated that KGF can prevent lung and gastrointestinal toxicity following chemotherapy and radiation and preliminary clinical data in the later setting supports these findings. In the experimental allogeneic bone marrow transplant scenario KGF has shown significant ability to prevent graft-versus-host disease by maintaining gastrointestinal tract integrity and acting as a cytokine shield to prevent subsequent proinflammatory cytokine generation. Within this setting KGF has also shown an ability to prevent experimental idiopathic pneumonia syndrome by stimulating production of surfactant protein A, promoting alveolar epithelialization and attenuating immune-mediated injury. Perhaps most unexpectantly, KGF appears able to maintain thymic function during allogeneic stern cell transplantation and so promote T cell engraftment and reconstitution. These data suggest that KGF will find a therapeutic role in the prevention of epithelial toxicity following intensive chemotherapy and radiotherapy protocols and in allogeneic stem cell transplantation.
Resumo:
Objective. Evidence from animal studies, case reports, and phase I studies suggests that hemopoietic stem cell transplantation (HSCT) can be effective in the treatment of rheumatoid arthritis (RA). It is unclear, however, if depletion of T cells in the stem cell product infused after high-dose chemotherapy is beneficial in prolonging responses by reducing the number of infused autoreactive T cells. This pilot multicenter, randomized trial was undertaken to obtain feasibility data on whether CD34 selection (as a form of T cell depletion) of an autologous stem cell graft is of benefit in the HSCT procedure in patients with severe, refractory RA. Methods. Thirty-three patients with severe RA who had been treated unsuccessfully with methotrexate and at least 1 other disease-modifying agent were enrolled in the trial. The patients received high-dose immunosuppressive treatment with 200 mg/kg cyclophosphamide followed by an infusion of autologous stem cells that were CD34 selected or unmanipulated. Safety, efficacy (based on American College of Rheumatology [ACR] response criteria), and time to recurrence of disease were assessed on a monthly basis for up to 12 months. Results. All patients were living at the end of the study, with no major unexpected toxicities. Overall, on an intent-to-treat basis, ACR 20% response (ACR20) was achieved in 70% of the patients. An ACR70 response was attained in 27.7% of the 18 patients who had received CD34-selected cells and 53.3% of the 15 who had received unmanipulated cells (P = 0.20). The median time to disease recurrence was 147 days in the CD34-selected cell group and 201 days in the unmanipulated cell group (P = 0.28). There was no relationship between CD4 lymphopenia and response, but 72% of rheumatoid factor (RF)-positive patients had an increase in RF titer prior to recurrence of disease. Conclusion. HSCT can be performed safely in patients with RA, and initial results indicate significant responses in patients with severe, treatment-resistant disease. Similar outcomes were observed in patients undergoing HSCT with unmanipulated cells and those receiving CD34-selected cells. Larger studies are needed to confirm these findings.
Resumo:
HLA-B*4402 and B*4403 are naturally occurring MHC class I alleles that are both found at a hi,,h frequency in all human populations, and vet they only differ by one residue on the alpha2 helix (B*4402 Aspl56-->B*4403 Leu156) CTLs discriminate between HLA-B*4402 and B*4403, and these allotypes stimulate strong mutual allogeneic responses reflecting their known barrier to hemopoeitic stem cell transplantation. Although HLA-B*4402 and B*4403 share >95% of their peptide repertoire, B*4403 presents more unique peptides than B*4402, consistent with the stronger T cell alloreactivity observed toward B*4403 compared with B*4402. Crystal structures of B*4402 and B*4403 show how the polymorphisin at position 156 is completely buried and yet alters both the peptide and the heavy chain conformation, relaxing ligand selection by B*4403 compared with B*4402. Thus, the polymorphism between HLA-B*4402 and B 4403 modifies both peptide repertoire and T cell recognition, and is reflected lit the paradoxically powerful alloreactivity that occurs across this minimal mismatch. The findings suggest that these closely related class I genes are maintained lit diverse human populations through their differential impact on the selection of peptide ligands and the T cell repertoire.
Resumo:
Objective: To review the outcome of acute liver failure (ALF) and the effect of liver transplantation in children in Australia. Methodology: A retrospective review was conducted of all paediatric patients referred with acute liver failure between 1985 and 2000 to the Queensland Liver Transplant Service, a paediatric liver transplant centre based at the Royal Children's Hospital, Brisbane, that is one of three paediatric transplant centres in Australia. Results: Twenty-six patients were referred with ALF. Four patients did not require transplantation and recovered with medical therapy while two were excluded because of irreversible neurological changes and died. Of the 20 patients considered for transplant, three refused for social and/or religious reasons, with 17 patients listed for transplantation. One patient recovered spontaneously and one died before receiving a transplant. There were 15 transplants of which 40% (6/15) were < 2 years old. Sixty-seven per cent (10/15) survived > 1 month after transplantation. Forty per cent (6/15) survived more than 6 months after transplant. There were only four long-term survivors after transplant for ALF (27%). Overall, 27% (6/22) of patients referred with ALF survived. Of the 16 patients that died, 44% (7/16) were from neurological causes. Most of these were from cerebral oedema but two patients transplanted for valproate hepatotoxicity died from neurological disease despite good graft function. Conclusions: Irreversible neurological disease remains a major cause of death in children with ALF. We recommend better patient selection and early referral and transfer to a transplant centre before onset of irreversible neurological disease to optimize outcome of children transplanted for ALF.
Resumo:
A series of 'pellicular' type supports were fabricated by direct gamma-radiation-mediated graft polymerisation of styrene onto polypropylene, followed by aminomethylation. Raman spectroscopy was used for measuring the level of penetration of polystyrene graft into polypropylene, and other structural features such as density of graft and depth of functionalisation. The kinetics of the coupling of fluorenylmethylcarbamate (Fmoc)-labelled amino acids, to the aminomethylated polystyrene grafts have been measured by UV absorption followed cleavage of the Fmoc chromophore. The Raman spectroscopy results showed that for this series of experiments the calculated rate coefficient for coupling of Fmoc-labelled amino acids was primarily dependent on graft thickness, but was also influenced by the proportion of polystyrene graft to polypropylene. In general, it was also shown that with increasing loading capacity of support the calculated rate coefficient for amino-acid coupling decreased correspondingly. In addition, a support that had both a high rate coefficient and a high loading capacity was prepared from polypropylene base material with a co-continuous porous structure (high surface area). (C) 2003 Society of Chemical Industry.
Resumo:
A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. (C) 2003 Society of Chemical Industry.
Resumo:
Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Due to the few studies about grafting in net melon, in order to obtain better control of soil pathogens, the aim of the present study was to evaluate 16 genotypes of Cucurbitaceae: Benincasa hispida, Luffa cylindrica, pumpkin 'Jacarezinho', pumpkin 'Menina Brasileira', squash 'Exposição', squash 'Coroa', pumpkin 'Canhão Seca', pumpkin 'Squash', pumpkin 'Enrrugado Verde', pumpkin 'Mini Paulista', pumpkin 'Goianinha', watermelon 'Charleston Gray', melon 'Rendondo Gaucho', melon 'Redondo Amarelo', cucumber 'Caipira HS' and cucumber 'Caipira Rubi', regarding to compatibility of grafting in net melon and resistance to Meloidogyne incognita, based on the reproduction factor (RF), according to Oostenbrink (1966). To assess resistance, the seedlings were transplanted to ceramic pots and inoculated with 300/mL eggs and/or second stage juveniles of M. incognita. At 50 days after transplanting, the plants were removed from the pots and the resistance was evaluated. The compatibility between resistant rootstock and grafts of net melon was determined by performing simple cleft grafting, in a commercial net melon hybrid of great market acceptance and susceptible to M. incognita (Bonus no. 2). The genotypes Luffa cylindrica, pumpkin 'Goianinha', pumpkin 'Mini-Paulista', melon 'Redondo Amarelo', watermelon 'Charleston Gray' are resistant to the nematode M. incognita. The better compatibilities occurred with the rootstocks melon 'Amarelo', which presented 100% of success, followed by pumpkin 'Mini-Paulista' with 94%. On the other hand, Sponge gourd, watermelon 'Charleston Gray' and pumpkin 'Goianinha' showed low graft take percentages of 66%, 62% and 50%, respectively.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.