950 resultados para regular languages
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution.