990 resultados para reactor kinetics
Resumo:
Surface initiated polymerization (SIP) is a valuable tool in synthesizing functional polymer brushes, yet the kinetic understanding of SIP lags behind the development of its application. We apply quartz crystal microbalance (QCM) to address two issues that are not fully addressed yet play a central role in the rational design of functional polymer brushes, namely quantitative determination of the kinetics and the initiator efficiency (IE) of SIP. SIP are monitored online using QCM. Two quantitative frequency-thickness (f-T) relations make the direct determination and comparison of the rate of polymerization possible even for different monomers. Based on the bi-termination model, the kinetics of SIP is simply described by two variables, which are related to two polymerization constants, namely a = 1/(k (p,s,app)-[M][R center dot](0)) and b = k (t,s,app)/(k (p,s,app)[M]). Factors that could alter the kinetics of SIP are studied, including (i) the molecular weight of monomers, (ii) the solvent used, (iii) the initial density of the initiator, (iv) the concentration of monomer, [M], and (v) the catalyst system (ratio among the ingredients, metal, ligands, and additives). The dynamic nature of IE is also described by these two variables, IE = a/(a + bt). Instead of the molecular weight and the polydispersity, we suggest that film thickness, the two kinetic parameters (a and b), and the initial density of the initiator and IE be the parameters that characterize ultra-thin polymer brushes. Besides the kinetics study of SIP, the reported method has many other applications, for example, in the fast screening of catalyst system for SIP and other polymerization systems.
Resumo:
The production of ethylbenzene from the alkylation of dilute ethylene in fee off-gases with benzene has been commercialized in China over a newly developed catalyst composed of ZSM-5/ZSM-11 co-crystallized zeolite. The duration of an operation cycle of the commercial catalyst could be as long as 180 days. The conversion of ethylene could attain higher than 95%, while the amount of coke deposited on the catalyst was only about 10 wt.%. Thermogravimetry (TG) was used to study the coking behavior of the catalyst during the alkylation of fee off-gas with benzene to ethylbenzene. Based on effects of reaction time, reaction temperature, reactants and products on coking during the alkylation process, it is found that the coking rate during the alkylation procedure follows the order: ethylbenzene > ethylene > propylene > benzene for single component, and benzene-ethylene > benzene-propylene for bi-components under the same reaction condition. Furthermore, the coking kinetic equations for benzene-ethylene, benzene-propylene and ethylbenzene were established. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
It is indispensable to remove CO at the level of less than 50ppm in H-2-rich feed gas for the proton exchange membrane (PEM) fuel cells. In this paper, catalyst with high activity and selectivity, and a microchannel reactor for CO preferential oxidation (PROX) have been developed. The results indicated that potassium on supported Rh metal catalysts had a promoting effect in the CO selective catalytic oxidation under H-2-rich stream, and microchannel reactor has an excellent ability to use in on-board hydrogen generation system. CO conversion keeps at high levels even at a very high GHSV as 500 000 h(-1), so, miniaturization of hydrogen generation system can be achieved by using the microchannel reactor. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In our previous work, it was shown that LiLaNiO/gamma-Al2O3 was an excellent catalyst for partial oxidation of heptane to syngas in a fixed-bed reactor at high temperature and the selectivity of CO was about 93%. However, pure oxygen was used as the oxidant. We have developed a dense oxygen permeation membrane Ba0.5Sr0.5Co0.8Fe0.2O3 that can supply pure oxygen for the reaction. In this work, the membrane was combined with the catalyst LiLaNiO/gamma-Al2O3 in one rector for the partial oxidation of heptane that is typical component of gasoline. A good performance of the membrane reactor has been obtained, with 100% n-heptane conversion and >94% hydrogen selectivity at the optimized reaction conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Al-pillared clay catalyst obtained by exposing activated clay powder to sulfuric acid and aluminium salts and calcining in air at 373-673 K, was found to be highly active for the title reaction. The results indicated that pillared layer clay of the mixed oxide has been employed as parent catalysts for their definite structure and special properties which can be modified by the substitution of L and B acid sites cations. Solid acid catalyst of Supported aluminium was found to be highly active and selective at the 373-473 K temperature range for heterogeneous esterification. The activity is mainly attributed to the Lewis (and a considerably small number of Bronsted) acid sites whose number and strength increased due to pillaring. The water produced in the esterification can be induced by Al3+, which makes the catalyst surface to form strong B acid. Their acidities are obtained by pH measurement. If only B acid sites are > 70%, and pH < 1 in the 2-ethoxyethanol, there exists an activity of esterification. The used catalyst gave identical results with that of the fresh one. X-ray diffraction spectra show that the composition and active phase of the used catalysts are the same as the fresh ones. The kinetic study of the reaction was carried out by an integral method of analysis. The kinetic equation of surface esterification is y = 2.36x - 0.98.
Resumo:
Crystallization kinetics of syndiotactic polypropylene ( sPP) was observed by light attenuation measurements. The initial stages of temperature dependent sPP crystallization fall in the range of Rayleigh scattering and Rayleigh-Debye-Gans scattering. Initial time and growth time of crystallization were obtained, and the trend of crystallization temperature dependent linear attenuation coefficient on the radius and the index of the refraction of the spherulite were evaluated.