999 resultados para quantum technologies
Resumo:
Reclamation and reuse of wastewater require the use of tools that minimize risks to health and natural ecosystems. There are various types of such tools, among which HACCP (hazardanalysis and critical control points) and barrier systems are gainingimportance. The research reported here aims to determine andevaluate the most efficient combinations of different treatmentsystems—barriers—for the reclamation of secondary effluentsfrom urban sewage treatment plants, and for obtaining water ofsufficient quality for reuse in accordance with existing legislation,in which water disinfection has become one of the keys tocompliance. Several conventional and non-conventional reclamationtechnologies are evaluated. The results lead us to recommendtreatment lines for the different reclaimed water uses established inthe Spanish legislation.
Resumo:
Through scientific discourse and reproductive technologies, the reproductive body and the maternal body continue to be constructed as ‘natural’. At the same time,these technologies have begun to blur the boundaries between what is consideredan acceptable reproductive body, and consequently an acceptable maternal body,and an unnatural or a socially undesireable one. As science purports to offerwomen greater control over how and when they choose to procreate, through methods which range between delaying or eliminating the possibility of contraception to those which extend the possibility of conception to postmenopausal or infertile women, these same procedures raise questions about thenature and ‘naturalness’ of reproduction. Added to these concerns are thesuitablility of the reproductive body as a maternal body. Consequently, and moreand more frequently, bodies which defy ideals about maternity and motherhoodemerge, and questions about what it means to mother are raised. Bodies whichcontest the construction of motherhood as natural are frequently represented asmonstrous or freakish, and the debate between science and nature is heightened.Hiromi Goto’s short story ‘Hopeful Monsters’ resists the construction of the‘natural’ maternal body by highlighting the way in which women’s bodies areshaped by scientific discourse. In turn, images of ‘monstrous’ mothers emerge andare challenged, suggesting the need to reimagine what it means to mother and whatit means to be a mother. Through reading a selection of the stories this paper willinterrogate possible alternatives to constructions of the ‘natural’ maternal body and motherhood, suggesting that the Goto’s ‘monsters’ are perhaps only monstrous as a result of scientific discourse which constructs them as such.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed to improve pavement quality through quantitative performance prediction. Evaluation of the actual performance (quality) of pavements requires in situ nondestructive testing (NDT) techniques that can accurately measure the most critical, objective, and sensitive properties of pavement systems. The purpose of this study is to assess existing as well as promising new NDT technologies for quality control/quality assurance (QC/QA) of asphalt mixtures. Specifically, this study examined field measurements of density via the PaveTracker electromagnetic gage, shear-wave velocity via surface-wave testing methods, and dynamic stiffness via the Humboldt GeoGauge for five representative paving projects covering a range of mixes and traffic loads. The in situ tests were compared against laboratory measurements of core density and dynamic modulus. The in situ PaveTracker density had a low correlation with laboratory density and was not sensitive to variations in temperature or asphalt mix type. The in situ shear-wave velocity measured by surface-wave methods was most sensitive to variations in temperature and asphalt mix type. The in situ density and in situ shear-wave velocity were combined to calculate an in situ dynamic modulus, which is a performance-based quality measurement. The in situ GeoGauge stiffness measured on hot asphalt mixtures several hours after paving had a high correlation with the in situ dynamic modulus and the laboratory density, whereas the stiffness measurement of asphalt mixtures cooled with dry ice or at ambient temperature one or more days after paving had a very low correlation with the other measurements. To transform the in situ moduli from surface-wave testing into quantitative quality measurements, a QC/QA procedure was developed to first correct the in situ moduli measured at different field temperatures to the moduli at a common reference temperature based on master curves from laboratory dynamic modulus tests. The corrected in situ moduli can then be compared against the design moduli for an assessment of the actual pavement performance. A preliminary study of microelectromechanical systems- (MEMS)-based sensors for QC/QA and health monitoring of asphalt pavements was also performed.
Resumo:
This paper analyses the adoption of new information and communication technologies (ICTs) by Spanish journalists specialising in science. Applying an ethnographic research model, this study was based on a wide sample of professionals, aiming to evaluate the extent by which science journalists have adopted the new media and changed the way they use information sources. In addition, interviewees were asked whether in their opinion the Web 2.0 has had an impact on the quality of the news. The integration of formats certainly implies a few issues for today’s newsrooms. Finally, with the purpose of improving the practice of science information dissemination, the authors put forward a few proposals, namely: Increasing the training of Spanish science journalists in the field of new technologies; Emphasising the accuracy of the information and the validation of sources; Rethinking the mandates and the tasks of information professionals.
Resumo:
The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.
Resumo:
[Table des matières] Technology assessment in health care in the United States: an historical review / S. Perry. - The aims and methods of technology assessment / JH Glasser. - Evaluation des technologies de la santé / A. Griffiths. - Les données nécessaires pour l'évaluation des technologies médicales / R. Chrzanowski, F. Gutzwiller, F. Paccaud. - Economic issues in technology assessment/DR Lairson, JM Swint. - Two decades of experience in technology assessment: evaluating the safety, performance, and cost effectiveness of medical equipment / JJ Nobel. - Demography and technology assessment / H. Hansluwka. - Méthodes expérimentale et non expérimentale pour l'évaluation des innovations technologiques / R. Chrzanowski, F. Paccaud. - Skull radiography in head trauma: a successful case of technology assessment / NT Racoveanu. - Complications associées à l'anesthésie: une étude prospective en France / L. Tiret et al. - Impact de l'information publique sur les taux opératoires: le cas de l'hystérectomie / G. Domenighetti, P. Luraschi, A. Casabianca. - The clinical effectiveness of acupuncture for the relief of chronic pain / MS Patel, F. Gutzwiller, F. Paccaud, A. Marazzi. - Soins à domicile et hébergement à long terme: à la recherche d'un développement optimum / G. Tinturier. - Economic evaluation of six scenarios for the treatment of stones in the kidney and ureter by surgery or ESWL / MS Patel et al. - Technology assessment and medical practice / F. Gutzwiller. - Technology assessment and health policy / SJ Reiser. - Global programme on appropriate technology for health, its role and place within WHO / K. Staehr Johansen.
Resumo:
We show how to decompose any density matrix of the simplest binary composite systems, whether separable or not, in terms of only product vectors. We determine for all cases the minimal number of product vectors needed for such a decomposition. Separable states correspond to mixing from one to four pure product states. Inseparable states can be described as pseudomixtures of four or five pure product states, and can be made separable by mixing them with one or two pure product states.
Resumo:
The recent production of synthetic magnetic fields acting on electroneutral particles, such as atoms or photons, has boosted interest in the quantum Hall physics of bosons. Adding pseudospin 1/2 to the bosons greatly enriches the scenario, as it allows them to form an interacting integer quantum Hall (IQH) phase with no fermionic counterpart. Here we show that, for a small two-component Bose gas on a disk, the complete strongly correlated regime, extending from the integer phase at filling factor ν = 2 to the Halperin phase at filling factor ν = 2 / 3, is well described by composite fermionization of the bosons. Moreover we study the edge excitations of the IQH state, which, in agreement with expectations from topological field theory, are found to consist of forward-moving charge excitations and backward-moving spin excitations. Finally, we demonstrate how pair-correlation functions allow one to experimentally distinguish the IQH state from competing states, such as non-Abelian spin singlet (NASS) states.
Resumo:
The use of quantum dots (QDs) in the area of fingermark detection is currently receiving a lot of attention in the forensic literature. Most of the research efforts have been devoted to cadmium telluride (CdTe) quantum dots often applied as powders to the surfaces of interests. Both the use of cadmium and the nano size of these particles raise important issues in terms of health and safety. This paper proposes to replace CdTe QDs by zinc sulphide QDs doped with copper (ZnS:Cu) to address these issues. Zinc sulphide-copper doped QDs were successfully synthesized, characterized in terms of size and optical properties and optimized to be applied for the detection of impressions left in blood, where CdTe QDs proved to be efficient. Effectiveness of detection was assessed in comparison with CdTe QDs and Acid Yellow 7 (AY7, an effective blood reagent), using two series of depletive blood fingermarks from four donors prepared on four non-porous substrates, i.e. glass, transparent polypropylene, black polyethylene and aluminium foil. The marks were cut in half and processed separately with both reagents, leading to two comparison series (ZnS:Cu vs. CdTe, and ZnS:Cu vs. AY7). ZnS:Cu proved to be better than AY7 and at least as efficient as CdTe on most substrates. Consequently, copper-doped ZnS QDs constitute a valid substitute for cadmium-based QDs to detect blood marks on non-porous substrates and offer a safer alternative for routine use.
Resumo:
The dramatic rise in fuel prices and growing environmental concerns are pressing freight transportation companies to pursue new systems and methods to improve fuel efficiency and reduce their environmental impact. While select major carriers appear to be leading efforts to adopt technologies that support a dramatic improvement in fuel performance, there appears to be little understanding as to the breadth and depth of efforts being taken by the broader motor carrier community, consisting of over 20,000 companies of all sizes. The purpose of this study was to investigate the level of adoption of technologies and policies to support improved fuel efficiency among motor carrier fleets.
Resumo:
A consistent extension of local spin density approximation (LSDA) to account for mass and dielectric mismatches in nanocrystals is presented. The extension accounting for variable effective mass is exact. Illustrative comparisons with available configuration interaction calculations show that the approach is also very reliable when it comes to account for dielectric mismatches. The modified LSDA is as fast and computationally low demanding as LSDA. Therefore, it is a tool suitable to study large particle systems in inhomogeneous media without much effort.
Resumo:
Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.