973 resultados para probability models
Resumo:
Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS educative practice in helping to foster web 2.0 professionals.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.
Resumo:
In 2005, Stephen Abram, vice president of Innovation at SirsiDynix, challenged library and information science (LIS) professionals to start becoming “librarian 2.0.” In the last few years, discussion and debate about the “core competencies” needed by librarian 2.0 have appeared in the “biblioblogosphere” (blogs written by LIS professionals). However, beyond these informal blog discussions few systematic and empirically based studies have taken place. A project funded by the Australian Learning and Teaching Council fills this gap. The project identifies the key skills, knowledge, and attributes required by “librarian 2.0.” Eighty-one members of the Australian LIS profession participated in a series of focus groups. Eight themes emerged as being critical to “librarian 2.0”: technology, communication, teamwork, user focus, business savvy, evidence based practice, learning and education, and personal traits. Guided by these findings interviews with 36 LIS educators explored the current approaches used within contemporary LIS education to prepare graduates to become “librarian 2.0”. This video presents an example of ‘great practice’ in current LIS education as it strives to foster web 2.0 professionals.
Resumo:
We present a modification of the algorithm of Dani et al. [8] for the online linear optimization problem in the bandit setting, which with high probability has regret at most O ∗ ( √ T) against an adaptive adversary. This improves on the previous algorithm [8] whose regret is bounded in expectation against an oblivious adversary. We obtain the same dependence on the dimension (n 3/2) as that exhibited by Dani et al. The results of this paper rest firmly on those of [8] and the remarkable technique of Auer et al. [2] for obtaining high probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.
Resumo:
Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.
Resumo:
Maternal and infant mortality is a global health issue with a significant social and economic impact. Each year, over half a million women worldwide die due to complications related to pregnancy or childbirth, four million infants die in the first 28 days of life, and eight million infants die in the first year. Ninety-nine percent of maternal and infant deaths are in developing countries. Reducing maternal and infant mortality is among the key international development goals. In China, the national maternal mortality ratio and infant mortality rate were reduced greatly in the past two decades, yet a large discrepancy remains between urban and rural areas. To address this problem, a large-scale Safe Motherhood Programme was initiated in 2000. The programme was implemented in Guangxi in 2003. Interventions in the programme included both demand-side and supply side-interventions focusing on increasing health service use and improving birth outcomes. Little is known about the effects and economic outcomes of the Safe Motherhood Programme in Guangxi, although it has been implemented for seven years. The aim of this research is to estimate the effectiveness and cost-effectiveness of the interventions in the Safe Motherhood Programme in Guangxi, China. The objectives of this research include: 1. To evaluate whether the changes of health service use and birth outcomes are associated with the interventions in the Safe Motherhood Programme. 2. To estimate the cost-effectiveness of the interventions in the Safe Motherhood Programme and quantify the uncertainty surrounding the decision. 3. To assess the expected value of perfect information associated with both the whole decision and individual parameters, and interpret the findings to inform priority setting in further research and policy making in this area. A quasi-experimental study design was used in this research to assess the effectiveness of the programme in increasing health service use and improving birth outcomes. The study subjects were 51 intervention counties and 30 control counties. Data on the health service use, birth outcomes and socio-economic factors from 2001 to 2007 were collected from the programme database and statistical yearbooks. Based on the profile plots of the data, general linear mixed models were used to evaluate the effectiveness of the programme while controlling for the effects of baseline levels of the response variables, change of socio-economic factors over time and correlations among repeated measurements from the same county. Redundant multicollinear variables were deleted from the mixed model using the results of the multicollinearity diagnoses. For each response variable, the best covariance structure was selected from 15 alternatives according to the fit statistics including Akaike information criterion, Finite-population corrected Akaike information criterion, and Schwarz.s Bayesian information criterion. Residual diagnostics were used to validate the model assumptions. Statistical inferences were made to show the effect of the programme on health service use and birth outcomes. A decision analytic model was developed to evaluate the cost-effectiveness of the programme, quantify the decision uncertainty, and estimate the expected value of perfect information associated with the decision. The model was used to describe the transitions between health states for women and infants and reflect the change of both costs and health benefits associated with implementing the programme. Result gained from the mixed models and other relevant evidence identified were synthesised appropriately to inform the input parameters of the model. Incremental cost-effectiveness ratios of the programme were calculated for the two groups of intervention counties over time. Uncertainty surrounding the parameters was dealt with using probabilistic sensitivity analysis, and uncertainty relating to model assumptions was handled using scenario analysis. Finally the expected value of perfect information for both the whole model and individual parameters in the model were estimated to inform priority setting in further research in this area.The annual change rates of the antenatal care rate and the institutionalised delivery rate were improved significantly in the intervention counties after the programme was implemented. Significant improvements were also found in the annual change rates of the maternal mortality ratio, the infant mortality rate, the incidence rate of neonatal tetanus and the mortality rate of neonatal tetanus in the intervention counties after the implementation of the programme. The annual change rate of the neonatal mortality rate was also improved, although the improvement was only close to statistical significance. The influences of the socio-economic factors on the health service use indicators and birth outcomes were identified. The rural income per capita had a significant positive impact on the health service use indicators, and a significant negative impact on the birth outcomes. The number of beds in healthcare institutions per 1,000 population and the number of rural telephone subscribers per 1,000 were found to be positively significantly related to the institutionalised delivery rate. The length of highway per square kilometre negatively influenced the maternal mortality ratio. The percentage of employed persons in the primary industry had a significant negative impact on the institutionalised delivery rate, and a significant positive impact on the infant mortality rate and neonatal mortality rate. The incremental costs of implementing the programme over the existing practice were US $11.1 million from the societal perspective, and US $13.8 million from the perspective of the Ministry of Health. Overall, 28,711 life years were generated by the programme, producing an overall incremental cost-effectiveness ratio of US $386 from the societal perspective, and US $480 from the perspective of the Ministry of Health, both of which were below the threshold willingness-to-pay ratio of US $675. The expected net monetary benefit generated by the programme was US $8.3 million from the societal perspective, and US $5.5 million from the perspective of the Ministry of Health. The overall probability that the programme was cost-effective was 0.93 and 0.89 from the two perspectives, respectively. The incremental cost-effectiveness ratio of the programme was insensitive to the different estimates of the three parameters relating to the model assumptions. Further research could be conducted to reduce the uncertainty surrounding the decision, in which the upper limit of investment was US $0.6 million from the societal perspective, and US $1.3 million from the perspective of the Ministry of Health. It is also worthwhile to get a more precise estimate of the improvement of infant mortality rate. The population expected value of perfect information for individual parameters associated with this parameter was US $0.99 million from the societal perspective, and US $1.14 million from the perspective of the Ministry of Health. The findings from this study have shown that the interventions in the Safe Motherhood Programme were both effective and cost-effective in increasing health service use and improving birth outcomes in rural areas of Guangxi, China. Therefore, the programme represents a good public health investment and should be adopted and further expanded to an even broader area if possible. This research provides economic evidence to inform efficient decision making in improving maternal and infant health in developing countries.
Resumo:
The behaviour of ion channels within cardiac and neuronal cells is intrinsically stochastic in nature. When the number of channels is small this stochastic noise is large and can have an impact on the dynamics of the system which is potentially an issue when modelling small neurons and drug block in cardiac cells. While exact methods correctly capture the stochastic dynamics of a system they are computationally expensive, restricting their inclusion into tissue level models and so approximations to exact methods are often used instead. The other issue in modelling ion channel dynamics is that the transition rates are voltage dependent, adding a level of complexity as the channel dynamics are coupled to the membrane potential. By assuming that such transition rates are constant over each time step, it is possible to derive a stochastic differential equation (SDE), in the same manner as for biochemical reaction networks, that describes the stochastic dynamics of ion channels. While such a model is more computationally efficient than exact methods we show that there are analytical problems with the resulting SDE as well as issues in using current numerical schemes to solve such an equation. We therefore make two contributions: develop a different model to describe the stochastic ion channel dynamics that analytically behaves in the correct manner and also discuss numerical methods that preserve the analytical properties of the model.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
Inverse problems based on using experimental data to estimate unknown parameters of a system often arise in biological and chaotic systems. In this paper, we consider parameter estimation in systems biology involving linear and non-linear complex dynamical models, including the Michaelis–Menten enzyme kinetic system, a dynamical model of competence induction in Bacillus subtilis bacteria and a model of feedback bypass in B. subtilis bacteria. We propose some novel techniques for inverse problems. Firstly, we establish an approximation of a non-linear differential algebraic equation that corresponds to the given biological systems. Secondly, we use the Picard contraction mapping, collage methods and numerical integration techniques to convert the parameter estimation into a minimization problem of the parameters. We propose two optimization techniques: a grid approximation method and a modified hybrid Nelder–Mead simplex search and particle swarm optimization (MH-NMSS-PSO) for non-linear parameter estimation. The two techniques are used for parameter estimation in a model of competence induction in B. subtilis bacteria with noisy data. The MH-NMSS-PSO scheme is applied to a dynamical model of competence induction in B. subtilis bacteria based on experimental data and the model for feedback bypass. Numerical results demonstrate the effectiveness of our approach.
Resumo:
Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.
Resumo:
Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.
Resumo:
Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.