757 resultados para prerequisite
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.
Resumo:
The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.
Resumo:
These guidelines provide an overview of proven good practice in water harvesting from all over the world. They form a practical reference guide while providing support and specific technical expertise for the integration of water harvesting technologies into the planning and design of projects. Thus existing information and experience is strengthened. On a broader scale, the guidelines’ objective is to facilitate, share and upscale good practice in water harvesting given the state of current knowledge. Targeted end users include local and regional planners / advisors, rural development consultants, rainwater harvesting networks and communitiesof- practice, project managers, extension agents and other implementing staff. Through informing these professionals, the aim is to stimulate discussion and new thinking about improved water management in general, and water harvesting in particular, within rainfed agriculture, particularly in the drylands. The ultimate goal is to contribute to lifting 80 million rural people out of poverty by 2015: water security is a prerequisite to achieve food security for these people.
Resumo:
As Social Network Sites (SNS) permeate our daily routines, the question whether participation results in value for SNS users becomes particularly acute. This study adopts a 'participation-source-outcome' perspective to explore how distinct uses of SNS generate various types of social capital benefits. Building on existing research, extensive qualitative findings and an empirical study with 253 Facebook users, we uncover the process of social capital formation on SNS. We find that even though active communication is an important prerequisite, it is the diversified network structure and the increased social connectedness that are responsible for the attainment of the four benefits of social capital on SNS: emotional support, networking value, horizon broadening and offline participation. Moreover, we propose and validate scales to measure social capital benefits in the novel context of SNS.
Resumo:
Most newly synthesized messenger RNAs possess a 5’ cap and a 3’ poly(A) tail. The process of poly(A) tail shortening, also termed deadenylation, is important for post-transcriptional gene regulation, because deadenylation not only leads to mRNA translational inhibition but also is the first step of major mRNA degradation. Translationally inhibited mRNAs can be stored and/or degraded in dynamic cytoplasmic foci termed mRNA processing bodies, or P bodies, which are conserved in eukaryotes. To shed new light on the mechanisms of P body formation and P body functions, I focused on the link between deadenylation factors and P bodies. I found that the two major deadenylation complexes, Pan3-Pan2 and Ccr4-Caf1, can both be enriched in P bodies. The deadenylase activity of the Ccr4-Caf1 complex is prerequisite for P body formation. Pan3, but not the deadenylase Pan2, is essential for P body formation. While the C-terminal domain of Pan3 is important for interaction with Pan2, Pan3 N-terminal domain is important for Pan3 to form cytoplasmic foci colocalizing with P bodies and to promote mRNA decay. Interestingly, Pan3 N-terminal domain may be phosphorylated to regulate Pan3 localization and functions. Aside from the functions of the two deadenylation complexes in P bodies, I also studied all reported human P body proteins as a whole using bioinformatics. This effort not only has generated a comprehensive picture of the functions of and interactions among human P body proteins, but also has predicted proteins that may regulate P body formation and/or functions. In summary, my study has established a direct link between mRNA deadenylation and P body formation and has also led to new hypotheses to guide future research on how P body dynamics are controlled.
Resumo:
Changes in Greenland accumulation and the stability in the relationship between accumulation variability and large-scale circulation are assessed by performing time-slice simulations for the present day, the preindustrial era, the early Holocene, and the Last Glacial Maximum (LGM) with a comprehensive climate model. The stability issue is an important prerequisite for reconstructions of Northern Hemisphere atmospheric circulation variability based on accumulation or precipitation proxy records from Greenland ice cores. The analysis reveals that the relationship between accumulation variability and large-scale circulation undergoes a significant seasonal cycle. As the contributions of the individual seasons to the annual signal change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Interestingly, within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM. Hence, it would be possible to deduce a reliable reconstruction of seasonal atmospheric variability (e.g., for North Atlantic winters) if an accumulation or precipitation proxy were available that resolves single seasons. We further show that the simulated impacts of orbital forcing and changes in the ice sheet topography on Greenland accumulation exhibit strong spatial differences, emphasizing that accumulation records from different ice core sites regarding both interannual and long-term (centennial to millennial) variability cannot be expected to look alike since they include a distinct local signature. The only uniform signal to external forcing is the strong decrease in Greenland accumulation during glacial (LGM) conditions and an increase associated with the recent rise in greenhouse gas concentrations.
Resumo:
High-performance thermoplastics including polyetheretherketone (PEEK) are key biomaterials for load-bearing implants. Plasma treatment of implants surfaces has been shown to chemically activate its surface, which is a prerequisite to achieve proper cell attachment. Oxygen plasma treatment of PEEK films results in very reproducible surface nanostructures and has been reported in the literature. Our goal is to apply the plasma treatment to another promising polymer, polyetherketoneketone (PEKK), and compare its characteristics to the ones of PEEK. Oxygen plasma treatments of plasma powers between 25 and 150 W were applied on 60 μm-thick PEKK and 100 μm-thick PEEK films. Analysis of the nanostructures by atomic force microscopy showed that the roughness increased and island density decreased with plasma power for both PEKK and PEEK films correlating with contact angle values without affecting bulk properties of the used films. Thermal analysis of the plasma-treated films shows that the plasma treatment does not change the bulk properties of the PEKK and PEEK films.
Resumo:
Morphological analysis of neonatal rabbit retina suggests that the type-A horizontal cell acts as the pioneer cell for development of the OPL. It is the first mature element of the OPL, and it forms the infrastructure upon which the OPL accrues. The role of type-A horizontal cells in influencing postnatal development of the OPL was examined.^ GABAergic characteristics of the type-A horizontal cell were defined. The type-A horizontal cell was found to possess two more GABAergic characteristics in addition to those previously demonstrated, during a short period in early postnatal development: endogenous stores of GABA and the GABA precursor, glutamate. Lesioning the type-A horizontal cell resulted in their permanent loss in addition to the disappearance of cone terminals and a dramatic increase in rod terminals within the OPL. Thus the type-A cells are not a necessary prerequisite for positioning the OPL in postnatal development, but may be necessary for establishment of the normal photoreceptor mosaic.^ Since type-A horizontal cells possess a number of GABAergic qualities during the period of cone photoreceptor cell differentiation, and there are reports of GABA's trophic action in other developing neuronal systems; the role that GABAergic type-A horizontal cells play in directing photoreceptor differentiation was examined.^ Disrupting effects of GABA-A receptor antagonists indicate that type-A horizontal cells act as postsynaptic targets for the growing cone terminals of photoreceptor cells. These trophic or synaptic interactions may involve GABA-A receptors activated by GABA released from horizontal cells. These findings are consistent with the hypothesis that type-A horizontal cells act as pioneering cells in directing the postnatal development of the OPL.^ These studies offer an in depth analysis of the structural and chemical relationship between type-A horizontal cells and other elements of the OPL from which the roles of type-A horizontal cells and the GABA system in development can be defined. They contribute to our knowledge of both structural and GABAergic mechanisms involved in central nervous system development. ^
Resumo:
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.
Resumo:
Previous studies from our lab have established that large molecular weight mucin glycoproteins are major apically-disposed components of mouse uterine epithelial cells in vitro (Valdizan et al., (1992) J. Cell. Physiol. 151:451-465). The present studies demonstrate that Muc-1 represents one of the apically-disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and mRNA expression are regulated in the peri-implantation stage mouse uterus by ovarian steroids. Muc-1 expression is high in the proestrous and estrous stages, and decreases during diestrous. Both Muc-1 protein and mRNA levels decline to barely detectable levels by day 4 of pregnancy, i.e., prior to the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by administration of exogenous progesterone. Initiation of implantation was triggered by coinjection of progesterone maintained mice with a nidatory dose of 17$\beta$-estradiol. Muc-1 levels in the uterine epithelia of progesterone maintained mice declined to similar low levels as observed on day 4 of normal pregnancy. Coinjection of estradiol did not alter Muc-1 expression suggesting that down-regulation of Muc-1 is a progesterone dominated event. This was confirmed in ovariectomized, non-pregnant mice which displayed stimulation of Muc-1 expression following 6 hr of estradiol injection. Estradiol stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. While progesterone alone had no effect on Muc-1 expression, it antagonized estradiol action in this regard. Injection of pregnant mice with the antiprogestin, RU 486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is progesterone receptor-mediated. Muc-1 appears to function as an anti-adhesive molecule at the apical cell surface of mouse uterine epithelial cells. Treatment of polarized cultures of mouse uterine epithelial cells with O-sialoglycoprotein endopeptidase reduced mucin expression in vitro, by about 50%, and converted polarized uterine epithelia to a functionally receptive state. Similarly, ablation of Muc-1 in Muc-1 null mice resulted in polarized uterine epithelia that were functionally receptive as compared to their wild-type counterparts in vitro. Collectively, these data indicate that Muc-1 and other mucins function as anti-adhesive molecules and that reduction or removal of these molecules is a prerequisite for the generation of a receptive uterine state. ^
Resumo:
PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.
Resumo:
Leaves are arranged according to regular patterns, a phenomenon referred to as phyllotaxis. Important determinants of phyllotaxis are the divergence angle between successive leaves, and the size of the leaves relative to the shoot axis. Young leaf primordia are thought to provide positional information to the meristem, thereby influencing the positioning of new primordia and hence the divergence angle. On the contrary, the meristem signals to the primordia to establish their dorsoventral polarity, which is a prerequisite for the formation of a leaf blade. These concepts originate from classical microsurgical studies carried out between the 1920s and the 1970s. Even though these techniques have been abandoned in favor of genetic analysis, the resulting insights remain a cornerstone of plant developmental biology. Here, we employ new microsurgical techniques to reassess and extend the classical studies on phyllotaxis and leaf polarity. Previous experiments have indicated that the isolation of an incipient primordium by a tangential incision caused a change of divergence angle between the two subsequent primordia, indicating that pre-existing primordia influence further phyllotaxis. Here.. we repeat these experiments and compare them with the results of laser ablation of incipient primordia. Furthermore. we explore to what extent the different pre-existing primordia influence the size and position of new organs. and hence phyllotaxis. We propose that the two youngest primordia (P-1 and P-2) are sufficient for the approximate positioning of the incipient primordium (I-1), and therefore for the perpetuation of the generative spiral, whereas the direct contact neighbours of I-1 (P-2 and P-3) control its delimitation and hence its exact size and position. Finally. we report L I specific cell ablation experiments suggesting that the meristem L-1 layer is essential for the dorsoventral patterning of leaf primordia.
Resumo:
Using transcranial magnetic stimulation and skin conductance responses, we sought to clarify if, and to what extent, emotional experiences of different valences and intensity activate the hand-motor system and the associated corticospinal tract. For that purpose, we applied a newly developed method to evoke strong emotional experiences by the simultaneous presentation of musical and pictorial stimuli of congruent emotional valence. We uncovered enhanced motor-evoked potentials, irrespective of valence, during the simultaneous presentation of emotional music and picture stimuli (Combined conditions) compared with the single presentation of the two modalities (Picture/Music conditions). In contrast, vegetative arousal was enhanced during both the Combined and Music conditions, compared with the Picture conditions, again irrespective of emotional valence. These findings strongly indicate that arousal is a necessary, but not sufficient, prerequisite for triggering the motor system of the brain. We offer a potential explanation for this discrepant, but intriguing, finding in the paper.
Resumo:
BACKGROUND AND AIM Switzerland has a low post mortem organ donation rate. Here we examine variables that are associated with the consent of the deceased's next of kin (NOK) for organ donation, which is a prerequisite for donation in Switzerland. METHODS AND ANALYSIS During one year, we registered information from NOK of all deceased patients in Swiss intensive care units, who were approached for consent to organ donation. We collected data on patient demographics, characteristics of NOK, factors related to the request process and to the clinical setting. We analyzed the association of collected predictors with consent rate using univariable logistic regression models; predictors with p-values <0.2 were selected for a multivariable logistic regression. RESULTS Of 266 NOK approached for consent, consent was given in 137 (51.5%) cases. In multivariable analysis, we found associations of consent rates with Swiss nationality (OR 3.09, 95% CI: 1.46-6.54) and German language area (OR 0.31, 95% CI: 0.14-0.73). Consent rates tended to be higher if a parent was present during the request (OR 1.76, 95% CI: 0.93-3.33) and if the request was done before brain death was formally declared (OR 1.87, 95% CI: 0.90-3.87). CONCLUSION Establishing an atmosphere of trust between the medical staff putting forward a request and the NOK, allowing sufficient time for the NOK to consider donation, and respecting personal values and cultural differences, could be of importance for increasing donation rates. Additional measures are needed to address the pronounced differences in consent rates between language regions.