981 resultados para predictive modelling
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.
Resumo:
The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two-dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25?m). However, it may also be valid even at much finer grid resolutions (e.g. 1?m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
Her2/neu is a tyrosine kinase receptor which stimulates cell growth. The receptor is overexpressed in about 20% of breast cancers. Her2/neu expression is an indicator of poor prognosis but also the target of the treatment of breast cancer using humanised anti-Her2/ neu antibodies. Only cancers overexpressing the protein will respond to this therapy, but which has significant (cardiac) side effects and is expensive. It is therefore important to test for the overexpression of the protein on breast cancer cells. This paper discusses how this can be done and ongoing research into new therapeutic options targeting the involved signaling pathways.
Resumo:
1. Harsh environmental conditions experienced during development can reduce the performance of the same individuals in adulthood. However, the 'predictive adaptive response' hypothesis postulates that if individuals adapt their phenotype during development to the environments where they are likely to live in the future, individuals exposed to harsh conditions in early life perform better when encountering the same harsh conditions in adulthood compared to those never exposed to these conditions before. 2. Using the common vole (Microtus arvalis) as study organism, we tested how exposure to flea parasitism during the juvenile stage affects the physiology (haematocrit, resistance to oxidative stress, resting metabolism, spleen mass, and testosterone), morphology (body mass, testis mass) and motor performance (open field activity and swimming speed) of the same individuals when infested with fleas in adulthood. According to the 'predictive adaptive response' hypothesis, we predicted that voles parasitized at the adult stage would perform better if they had already been parasitized with fleas at the juvenile stage. 3. We found that voles exposed to fleas in adulthood had a higher metabolic rate if already exposed to fleas when juvenile, compared to voles free of fleas when juvenile and voles free of fleas in adulthood. Independently of juvenile parasitism, adult parasitism impaired adult haematocrit and motor performances. Independently of adult parasitism, juvenile parasitism slowed down crawling speed in adult female voles. 4. Our results suggest that juvenile parasitism has long-term effects that do not protect from the detrimental effects of adult parasitism. On the contrary, experiencing parasitism in early-life incurs additional costs upon adult parasitism measured in terms of higher energy expenditure, rather than inducing an adaptive shift in the developmental trajectory. 5. Hence, our study provides experimental evidence for long term costs of parasitism. We found no support for a predictive adaptive response in this host-parasite system.
Resumo:
BACKGROUND: Adrenal insufficiency is a rare and potentially lethal disease if untreated. Several clinical signs and biological markers are associated with glucocorticoid failure but the importance of these factors for diagnosing adrenal insufficiency is not known. In this study, we aimed to assess the prevalence of and the factors associated with adrenal insufficiency among patients admitted to an acute internal medicine ward. METHODS: Retrospective, case-control study including all patients with high-dose (250 μg) ACTH-stimulation tests for suspected adrenal insufficiency performed between 2008 and 2010 in an acute internal medicine ward (n = 281). Cortisol values <550 nmol/l upon ACTH-stimulation test were considered diagnostic for adrenal insufficiency. Area under the ROC curve (AROC), sensitivity, specificity, negative and positive predictive values for adrenal insufficiency were assessed for thirteen symptoms, signs and biological variables. RESULTS: 32 patients (11.4%) presented adrenal insufficiency; the others served as controls. Among all clinical and biological parameters studied, history of glucocorticoid withdrawal was the only independent factor significantly associated with patients with adrenal insufficiency (Odds Ratio: 6.71, 95% CI: 3.08 -14.62). Using a logistic regression, a model with four significant and independent variable was obtained, regrouping history of glucocorticoid withdrawal (OR 7.38, 95% CI [3.18 ; 17.11], p-value <0.001), nausea (OR 3.37, 95% CI [1.03 ; 11.00], p-value 0.044), eosinophilia (OR 17.6, 95% CI [1.02; 302.3], p-value 0.048) and hyperkalemia (OR 2.41, 95% CI [0.87; 6.69], p-value 0.092). The AROC (95% CI) was 0.75 (0.70; 0.80) for this model, with 6.3 (0.8 - 20.8) for sensitivity and 99.2 (97.1 - 99.9) for specificity. CONCLUSIONS: 11.4% of patients with suspected adrenal insufficient admitted to acute medical ward actually do present with adrenal insufficiency, defined by an abnormal response to high-dose (250 μg) ACTH-stimulation test. A history of glucocorticoid withdrawal was the strongest factor predicting the potential adrenal failure. The combination of a history of glucocorticoid withdrawal, nausea, eosinophilia and hyperkaliemia might be of interest to suspect adrenal insufficiency.
Resumo:
OBJECTIVE: The effect of minor orthopaedic day surgery (MiODS) on patient's mood. METHODS: A prospective population-based cohort study of 148 consecutive patients with age above 18 and less than 65, an American Society of Anaesthesiology (ASA) score of 1, and the requirement of general anaesthesia (GA) were included. The Medical Outcomes Study - Short Form 36 (SF-36), Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) were used pre- and post-operatively. RESULTS: The mean physical component score of SF-36 before surgery was 45.3 (SD=+/-10.1) and 8 weeks following surgery was 44.9 (SD=+/-11.04) [n=148, p=0.51, 95% CI=(-1.03 to 1.52)]. For the measurement of the changes in mood using BDI, BAI and SF-36, latent construct modelling was employed to increase validity. The covariance between mood pre- and post-operatively (cov=69.44) corresponded to a correlation coefficient, r=0.88 indicating that patients suffering a greater number of mood symptoms before surgery continue to have a greater number of symptoms following surgery. When the latent mood constructs were permitted to have different means the model fitted well with chi(2) (df=1)=0.86 for which p=0.77, thus the null hypothesis that MiODS has no effect on patient mood was rejected. CONCLUSIONS: MiODS affects patient mood which deteriorates at 8 weeks post-operatively regardless of the pre-operative patient mood state. More importantly patients suffering a greater number of mood symptoms before MiODS continue to have a greater number of symptoms following surgery.
Resumo:
ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.
Resumo:
We evaluate conditional predictive densities for U.S. output growth and inflationusing a number of commonly used forecasting models that rely on a large number ofmacroeconomic predictors. More specifically, we evaluate how well conditional predictive densities based on the commonly used normality assumption fit actual realizationsout-of-sample. Our focus on predictive densities acknowledges the possibility that, although some predictors can improve or deteriorate point forecasts, they might have theopposite effect on higher moments. We find that normality is rejected for most modelsin some dimension according to at least one of the tests we use. Interestingly, however,combinations of predictive densities appear to be correctly approximated by a normaldensity: the simple, equal average when predicting output growth and Bayesian modelaverage when predicting inflation.