941 resultados para population genetics, Carpathian Basin
Resumo:
In order to investigate the determinants of effective population size in the socially monogamous Crocidura russula, the reproductive output of 44 individuals was estimated through genetic assignment methods. The individual variance in breeding success turned out to be surprisingly high, mostly because the males were markedly less monogamous than expected from previous behavioural data. Males paired simultaneously with up to four females and polygynous males had significantly more offspring than monogamous ones. The variance in female reproductive success also exceeded that of a Poisson distribution (though to a lesser extent), partly because females paired with multiply mated males weaned significantly more offspring. Polyandry also occurred occasionally, but only sequentially (i.e. without multiple paternity of litters). Estimates of the effective to census size ratio were ca. 0.60, which excluded the mating system as a potential explanation for the high genetic variance found in this shrew's populations. Our data suggest that gene flow from the neighbourhood (up to one-third of the total recruitment) is the most likely cause of the high levels of genetic diversity observed in this shrew's subpopulations.
Resumo:
The objectives of this study were to characterize raltegravir (RAL) population pharmacokinetics in HIV-positive (HIV(+)) and healthy individuals, identify influential factors, and search for new candidate genes involved in UDP glucuronosyltransferase (UGT)-mediated glucuronidation. The pharmacokinetic analysis was performed with NONMEM. Genetic association analysis was performed with PLINK using the relative bioavailability as the phenotype. Simulations were performed to compare once- and twice-daily regimens. A 2-compartment model with first-order absorption adequately described the data. Atazanavir, gender, and bilirubin levels influenced RAL relative bioavailability, which was 30% lower in HIV(+) than in healthy individuals. UGT1A9*3 was the only genetic variant possibly influencing RAL pharmacokinetics. The majority of RAL pharmacokinetic variability remains unexplained by genetic and nongenetic factors. Owing to the very large variability, trough drug levels might be very low under the standard dosing regimen, raising the question of a potential relevance of therapeutic drug monitoring of RAL in some situations.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.
Resumo:
Summary [résumé français voir ci-dessous] From the beginning of the 20th century the world population has been confronted with the human immune deficiency virus 1 (HIV-1). This virus has the particularity to mutate fast, and could thus evade and adapt to the human host. Our closest evolutionary related organisms, the non-human primates, are less susceptible to HIV-1. In a broader sense, primates are differentially susceptible to various retrovirus. Species specificity may be due to genetic differences among primates. In the present study we applied evolutionary and comparative genetic techniques to characterize the evolutionary pattern of host cellular determinants of HIV-1 pathogenesis. The study of the evolution of genes coding for proteins participating to the restriction or pathogenesis of HIV-1 may help understanding the genetic basis of modern human susceptibility to infection. To perform comparative genetics analysis, we constituted a collection of primate DNA and RNA to allow generation of de novo sequence of gene orthologs. More recently, release to the public domain of two new primate complete genomes (bornean orang-utan and common marmoset) in addition of the three previously available genomes (human, chimpanzee and Rhesus monkey) help scaling up the evolutionary and comparative genome analysis. Sequence analysis used phylogenetic and statistical methods for detecting molecular adaptation. We identified different selective pressures acting on host proteins involved in HIV-1 pathogenesis. Proteins with HIV-1 restriction properties in non-human primates were under strong positive selection, in particular in regions of interaction with viral proteins. These regions carried key residues for the antiviral activity. Proteins of the innate immunity presented an evolutionary pattern of conservation (purifying selection) but with signals of relaxed constrain if we compared them to the average profile of purifying selection of the primate genomes. Large scale analysis resulted in patterns of evolutionary pressures according to molecular function, biological process and cellular distribution. The data generated by various analyses served to guide the ancestral reconstruction of TRIM5a a potent antiviral host factor. The resurrected TRIM5a from the common ancestor of Old world monkeys was effective against HIV-1 and the recent resurrected hominoid variants were more effective against other retrovirus. Thus, as the result of trade-offs in the ability to restrict different retrovirus, human might have been exposed to HIV-1 at a time when TRIM5a lacked the appropriate specific restriction activity. The application of evolutionary and comparative genetic tools should be considered for the systematical assessment of host proteins relevant in viral pathogenesis, and to guide biological and functional studies. Résumé La population mondiale est confrontée depuis le début du vingtième siècle au virus de l'immunodéficience humaine 1 (VIH-1). Ce virus a un taux de mutation particulièrement élevé, il peut donc s'évader et s'adapter très efficacement à son hôte. Les organismes évolutivement le plus proches de l'homme les primates nonhumains sont moins susceptibles au VIH-1. De façon générale, les primates répondent différemment aux rétrovirus. Cette spécificité entre espèces doit résider dans les différences génétiques entre primates. Dans cette étude nous avons appliqué des techniques d'évolution et de génétique comparative pour caractériser le modèle évolutif des déterminants cellulaires impliqués dans la pathogenèse du VIH- 1. L'étude de l'évolution des gènes, codant pour des protéines impliquées dans la restriction ou la pathogenèse du VIH-1, aidera à la compréhension des bases génétiques ayant récemment rendu l'homme susceptible. Pour les analyses de génétique comparative, nous avons constitué une collection d'ADN et d'ARN de primates dans le but d'obtenir des nouvelles séquences de gènes orthologues. Récemment deux nouveaux génomes complets ont été publiés (l'orang-outan du Bornéo et Marmoset commun) en plus des trois génomes déjà disponibles (humain, chimpanzé, macaque rhésus). Ceci a permis d'améliorer considérablement l'étendue de l'analyse. Pour détecter l'adaptation moléculaire nous avons analysé les séquences à l'aide de méthodes phylogénétiques et statistiques. Nous avons identifié différentes pressions de sélection agissant sur les protéines impliquées dans la pathogenèse du VIH-1. Des protéines avec des propriétés de restriction du VIH-1 dans les primates non-humains présentent un taux particulièrement haut de remplacement d'acides aminés (sélection positive). En particulier dans les régions d'interaction avec les protéines virales. Ces régions incluent des acides aminés clé pour l'activité de restriction. Les protéines appartenant à l'immunité inné présentent un modèle d'évolution de conservation (sélection purifiante) mais avec des traces de "relaxation" comparé au profil général de sélection purifiante du génome des primates. Une analyse à grande échelle a permis de classifier les modèles de pression évolutive selon leur fonction moléculaire, processus biologique et distribution cellulaire. Les données générées par les différentes analyses ont permis la reconstruction ancestrale de TRIM5a, un puissant facteur antiretroviral. Le TRIM5a ressuscité, correspondant à l'ancêtre commun entre les grands singes et les groupe des catarrhiniens, est efficace contre le VIH-1 moderne. Les TRIM5a ressuscités plus récents, correspondant aux ancêtres des grands singes, sont plus efficaces contre d'autres rétrovirus. Ainsi, trouver un compromis dans la capacité de restreindre différents rétrovirus, l'homme aurait été exposé au VIH-1 à une période où TRIM5a manquait d'activité de restriction spécifique contre celui-ci. L'application de techniques d'évolution et de génétique comparative devraient être considérées pour l'évaluation systématique de protéines impliquées dans la pathogenèse virale, ainsi que pour guider des études biologiques et fonctionnelles
Resumo:
BACKGROUND: Reactive oxygen species production increases during aging, whereas protective mechanisms such as heat shock proteins (HSPs) or antioxidant capacity are depressed. Physical activity has been hypothesized to provide protection against oxidative damage during aging, but results remain controversial. This study aimed to investigate the effect of different levels of physical activity during aging on Hsp72 expression and systemic oxidative stress at rest and in response to maximal exercise. METHODS: Plasma antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC), thiobarbituric acid-reactive species (TBARS), advanced oxidized proteins products (AOPP), and Hsp72 expression in leukocytes were measured before and after maximal exercise testing in 32 elderly persons (aged 73.2 years), who were assigned to two different groups depending on their level of physical activity during the past 12 months (OLow = moderate to low level; OHigh = higher level). RESULTS: The OHigh group showed higher aerobic fitness and TEAC (both representing 120% of OLow values) as well as lower oxidative damage (50% of OLow values) and Hsp72 expression. Exercise led to a lower increase in oxidative damage in the OHigh group. Aerobic fitness was positively correlated with TEAC and negatively with lipid peroxidation (TBARS). Hsp72 expression was negatively correlated with TEAC but positively correlated with TBARS levels. CONCLUSIONS: The key finding of this study is that, in people aged 60 to 90 years, long-term high level of physical activity preserved antioxidant capacity and limited oxidative damage accumulation. It also downregulated Hsp72 expression, an adaptation potentially resulting from lower levels of oxidative damage.
Resumo:
Résumé Les champignons endomycorhiziens arbusculaires (CEA) forment des symbioses avec la plupart des plantes terrestres. Les CEA influencent la croissance des plantes et la biodiversité. Ils sont supposés avoir évolué de manière asexuée pendant au moins 400 millions d'années et aucune diversification morphologique majeure n'a été constatée. Pour ces raisons, les CEA sont considérés comme d'anciens asexués. Très peu d'espèces sont connues actuellement. Les individus de ces champignons contiennent des noyaux génétiquement différents dans un cytoplasme continu. La signification évolutive, la variabilité et la maintenance des génomes multiples au sein des individus sont inconnues. Ce travail a démontré qu'une population du CEA Glomus intraradices est génétiquement très variable. Nous avons conclu que les plantes hôtes plutôt que la différenciation géographique devraient être responsables de cette grande diversité. Puis nous avons cherché l'existence de recombinaison entre génotypes dans une population. Nous avons détecté un groupe recombinant au sein de la population, ce qui met en doute l'état d'anciens asexués des CEA. Nous avons également détecté l'occurrence de fusions d'hyphes et l'échange de noyaux entre isolats génétiquement différents. La descendance hybride issue de cet échange était viable et distincte phénotypiquement des isolats parentaux. En résumé, ce travail identifie des événements cruciaux dans le cycle de vie des CEA qui ont le potentiel d'influencer l'évolution de génomes multiples. L'étude des conséquences de ces événements sur les interactions avec les plantes hôtes pourrait éclaircir significativement la compréhension de la symbiose entre plantes et CEA. Abstract Arbuscular mycorrhizal fungi (AMF) are important symbionts of most land plants. AMF influence plant growth and biodiversity. Very few extant species are described. AMF are thought to have evolved asexually for at least 400 million years and no major morphological diversification has occurred. Due to these reasons, they were termed `ancient asexuals'. Fungal individuals harbour genetically different nuclei in a continuous cytoplasm. The variability, maintenance and evolutionary significance of multiple genomes within individuals are unknown. This work showed that a population of the AMF Glomus intraradices harbours very high genetic diversity. We concluded that host plants rather than geographic differentiation were responsible for this diversity. Furthermore, we investigated whether recombination occurred among genotypes of a G. intraradices population. The identification of a core group of recombining genotypes in the population refutes the assumption of ancient asexuality in AMF. We found that genetically different isolates can form hyphal fusions and exchange nuclei. The hybrid progeny produced by the exchange was viable and phenotypically distinct from the parental isolates. Taken together, this work provided evidence for key events in the AMF life cycle, that influence the evolution of multiple genomes. Studying the consequences of these events on the interaction with host plants may significantly further the understanding of the AMF-plant symbiosis.
Resumo:
PURPOSE. Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Purpose: Longevity has been attributed to decreased cardiovascular mortality. Subjects with long-lived parents may represent a valuable group to study cardiovascular risk factors (CVRF) associated with longevity, possibly leading to new ways of preventing cardiovascular disease. Methods: We analyzed data from a population-based sample of 2561 participants (1163 men and 1398 women) aged 55--75 years from the city of Lausanne, Switzerland (CoLaus study). Participants were stratified by the number of parents (0, 1, 2) who survived to 85 years or more. Trend across these strata was assessed using a non-parametric kmean test. The associations of parental age (independent covariate used as a proxy for longevity) with fasting blood glucose, blood pressures, blood lipids, body mass index (BMI), weight, height or liver enzymes (continuous dependent variables) were analyzed using multiple linear regressions. Models were adjusted for age, sex, alcohol consumption, smoking and educational level, and BMI for liver enzymes. Results: For subjects with 0 (N=1298), 1 (N=991) and 2 (N=272) long-lived parents, median BMI (interquartile range) was 25.4 (6.5), 24.9 (6.1) and 23.7 (4.8) kg/m2 in women (P<0.001), and 27.3 (4.8), 27.0 (4.5) and 25.9 (4.9) kg/m2 in men (P=0.04), respectively; median weight was 66.5 (16.1), 65.0 (16.4) and 63.4 (13.7) kg in women (P=0.003), and 81.5 (17.0), 81.4 (16.4) and 80.3 (17.1) kg in men (P=0.36). Median height was 161 (8), 162 (9) and 163 (8) cm in women (P=0.005), and 173 (9), 174 (9) and 174 (11) cm in men (P=0.09). The corresponding medians for AST (Aspartate Aminotransferase) were 31 (13), 29 (11) and 28 (10) U/L (P=0.002), and 28 (17), 27 (14) and 26 (19) U/L for ALT (Alanin Aminotransferase, P=0.053) in men. In multivariable analyses, greater parental longevity was associated with lower BMI, lower weight and taller stature in women (P<0.01) and lower AST in men (P=0.011). No significant associations were observed for the other variables analyzed. Sensitivity analyses restricted to subjects whose parents were dead (N=1844) led to similar results, with even stronger associations of parental longevity with liver enzymes in men. Conclusion: In women, increased parental longevity was associated with smaller BMI, attributable to lower weight and taller stature. In men, the association of increased parental longevity with lower liver enzymes, independently of BMI, suggests that parental longevity may be associated with decreased nonalcoholic fatty liver disease.
Resumo:
When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.
Resumo:
Many traits and/or strategies expressed by organisms are quantitative phenotypes. Because populations are of finite size and genomes are subject to mutations, these continuously varying phenotypes are under the joint pressure of mutation, natural selection and random genetic drift. This article derives the stationary distribution for such a phenotype under a mutation-selection-drift balance in a class-structured population allowing for demographically varying class sizes and/or changing environmental conditions. The salient feature of the stationary distribution is that it can be entirely characterized in terms of the average size of the gene pool and Hamilton's inclusive fitness effect. The exploration of the phenotypic space varies exponentially with the cumulative inclusive fitness effect over state space, which determines an adaptive landscape. The peaks of the landscapes are those phenotypes that are candidate evolutionary stable strategies and can be determined by standard phenotypic selection gradient methods (e.g. evolutionary game theory, kin selection theory, adaptive dynamics). The curvature of the stationary distribution provides a measure of the stability by convergence of candidate evolutionary stable strategies, and it is evaluated explicitly for two biological scenarios: first, a coordination game, which illustrates that, for a multipeaked adaptive landscape, stochastically stable strategies can be singled out by letting the size of the gene pool grow large; second, a sex-allocation game for diploids and haplo-diploids, which suggests that the equilibrium sex ratio follows a Beta distribution with parameters depending on the features of the genetic system.
Resumo:
To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.
Resumo:
BACKGROUND: In the past century, there has been a significant rise in life expectancy in almost all regions of the world, contributing to an increasingly older population. The aging of the population, in conjunction with urbanization and industrialization, has resulted in an important epidemiological transition marked by a widespread increase in the prevalence of chronic diseases and their sequelae. Current trends suggest that the transition will have a greater impact on developing countries compared to developed countries. An adequate response to the transition requires a strong emphasis on primary prevention and adequate resource allocation.
Resumo:
Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.
Resumo:
Alleles and haplotypes frequencies for 10 Y-chromosome STR loci (DYS19, DYS385 I/II, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS438 and DYS439), included in the Y-Plex6 and Y-Plex5 kits were determined for a Tunisian population sample of 100 male individuals.
Resumo:
Retinitis pigmentosa (RP) is a hereditary disease that leads to the progressive degeneration of retinal photoreceptor cells and to blindness. It is caused by mutations in several distinct genes, including the ciliary gene FAM161A, which is associated with a recessive form of this disorder. Recent investigations have revealed that defects in FAM161A represent a rather prevalent cause of hereditary blindness in Israel and the Palestinian territories, whereas they seem to be rarely present within patients from Germany. Genetic or clinical data are currently not available for other countries. In this work, we screened a cohort of patients with recessive RP from North America to determine the frequency of FAM161A mutations in this ethnically-mixed population and to assess the phenotype of positive cases. Out of 273 unrelated patients, only 3 subjects had defects in FAM161A. A fourth positive patient, the sister of one of these index cases, was also identified following pedigree analysis. They were all homozygous for the p.T452Sfx3 mutation, which was previously reported as a founder DNA variant in the Israeli and Palestinian populations. Analysis of cultured lymphoblasts from patients revealed that mutant FAM161A transcripts were actively degraded by nonsense-mediated mRNA decay. Electroretinographic testing showed 30 Hz cone flicker responses in the range of 0.10 to 0.60 microvolts in all cases at their first visit (age 12 to 23) (lower norm = 50 μV) and of 0.06 to 0.32 microvolts at their most recent examination (age 27 to 43), revealing an early-onset of this progressive disease. Our data indicate that mutations in FAM161A are responsible for 1% of recessive RP cases in North America, similar to the prevalence detected in Germany and unlike the data from Israel and the Palestinian territories. We also show that, at the molecular level, the disease is likely caused by FAM161A protein deficiency.
Resumo:
SLC26A2-related dysplasias encompass a spectrum of diseases: from lethal achondrogenesis type 1B (ACG1B; MIM #600972) and atelosteogenesis type 2 (AO2; MIM #256050) to classical diastrophic dysplasia (cDTD; MIM #222600) and recessive multiple epiphyseal dysplasia (rMED; MIM #226900). This study aimed at characterizing clinically, radiologically and molecularly 14 patients affected by non-lethal SLC26A2-related dysplasias and at evaluating genotype-phenotype correlation. Phenotypically, eight patients were classified as cDTD, four patients as rMED and two patients had an intermediate phenotype (mild DTD - mDTD, previously 'DTD variant'). The Arg279Trp mutation was present in all patients, either in homozygosity (resulting in rMED) or in compound heterozygosity with the known severe alleles Arg178Ter or Asn425Asp (resulting in DTD) or with the mutation c.727-1G>C (causing mDTD). The 'Finnish mutation', c.-26+2T>C, and the p.Cys653Ser, both frequent mutations in non-Portuguese populations, were not identified in any of the patients of our cohort and are probably very rare in the Portuguese population. A targeted mutation analysis for p.Arg279Trp and p.Arg178Ter in the Portuguese population allows the identification of approximately 90% of the pathogenic alleles.