908 resultados para poly(Ethylene Glycol) (PEG)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral hydrolysis reaction of post-consumer poly(ethylene terephthalate) in solid state was studied through the reaction of the polymer with water at the molar ratio 1:91 with autogenous pressure. Two sizes of post-consumer PET flakes and temperatures of 135 °C, 170°C and 205°C with pressures of 4.0 atm, 7.5 atm and 13.5 atm, respectively, were considered. With reaction time equal to 6h, the method reached 99% depolymerization at 205°C, 8.2% at 170 °C and 1.7% at 135°C. The reaction extension was measured by separating the terephthalic acid formed in the process and calculating by gravimetry how much material could still be reacted. Through the viscosimetry of diluted, solutions and the counting of carboxylic end groups in the remaining material from the gravimetric assay, it was possible to suggest that the reaction occurs randomly and in the whole volume of the polymeric particle and not solely on the surface. The terephthalic acid obtained and then purified was characterized by elemental analysis, magnetic nuclear resonance, size and panicle size distribution and spectrophotometry in the visible spectrum, and it was similar to the petrochemical equivalent, with purity recorded in carbon base equal to 99.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Compare the cryoprotectants Dimethyl Sulphoxide (DMSO), Ethylene Glycol (EG) and their association for cryopreservation of sheep ovarian cortex. Methodology: Fragments collected from ovaries were divided into 3 parts. 1. One part from sample was destined for analysis of fresh material. 2. The second part was incubated with solution of freezing having 1,5M EG or 1,5M DMSO or 1,5MEG + 1,5M DMSO and washed for dilution of the cryoprotectants. 3. The third part was submitted to cryopreservation using the same cryoprotectans (EG 1,5M; DMSO 1,5M and EG + DMSO 1,5M) and cryopreserved. In all groups, one part of sample was submitted to pre-antral follicles isolation and the remainder was destined to ultra-structural analysis. Results: After isolation of fresh primordial follicles (control), the percentage of viable follicles was 78,9%. The percentage of viable follicles only exposed to cryoprotectants 1,5M EG, 1,5M DMSO and 1,5M EG + 1,5M DMSO was 77,1%, 68,4% and 60,7% respectively. After cryopreservation were 75%, 60% and 55,6% respectively. Ultra-structural analysis of the primordial follicles derived from fresh ovarian fragments or from fragments just exposed to the cryoprotectants showed similar morphology. However, in frozen samples, alterations of mitochondria were observed in all groups. Despite this, the integrity of the remained organelles was preserved in follicles cryopreserved with EG, while that in others groups (DMSO and association) an excess of vacuolizaton in cytoplasm of oocytes and swelling of nuclear membrane was observed indicating degeneration. Conclusion: The Ehilene Glycol seems to be the cryoprotector more adequated for cryopreservation of sheep ovarian tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the roughness of colorless ocular button and four brands of colorless acrylic resins designed to fabricate ocular prosthesis as a function of weathering (1008 h) and different thickness (1 and 3.5 mm). Materials and methods: One-hundred-and-twenty specimens were fabricated and distributed in 12 groups. The analysis was carried out by means of digital roughness meter. Results: Data were analyzed statistically by ANOVA and Tukey test at 1% significance. The results showed that there was no statistically significant difference after the weathering period. Both the Vipi Cril acrylic resin with 3.5 mm in thickness and ocular button with 1 mm in thickness presented the lowest roughness values (0.12. Ra). Conclusion: The roughness of the acrylic resins and the ocular button was not affect by the weathering of 1008 h. However, the thickness of the specimens proved to have a major influence on roughness property. © 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yield and chemical composition of essential oils from leaves of Ocimum selloi B. submitted to organic and mineral fertilization, obtained by hydrodistillation and supercritical fluid extraction (SFE) were compared. Essential oil was extracted in a Clevenger-type apparatus for 2 h 30 min and analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m × 0.25 mm × 0.25 μm). Carrier gas was helium (1.7 ml/min); split ratio: 1:30. Temperature program: 50°C, rising to 180°C at 5°C/min, 180°C, rising to 280°C at 10°C/min. Injector temperature: 240°C and detector temperature: 230°C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. An Applied Separations-apparatus (Speed SFE, model 7071, Allentown, PA, EUA) was used for SFE extractions. They were conducted at pressure 200 bar and temperature 30°C (20 min in static mode and 40 min in dynamic mode). The supercritical CO2 flow rate was (6.8±0.7)×10-5 kg-CO2/s. The essential oil collected was immersed in ethylene glycol bath (5°C). The yield of essential oils obtained by SFE was larger than hydrodistillation in both fertilization treatments (279 and 333% for organic and mineral fertilizations, respectively). There were no differences between the fertilization treatments. The amount of the volatile components showed by GC-MS chromatogram was highest in the essential oil obtained by hydrodistillation than SFE. The main volatile constituents of the essential oils were trans-anethole (Hydrodistillation: organic - 52.4%; mineral - 55.0%/ SFE: Hydrodistillation - 62.8%; mineral - 66.8%) and methyl-chavicol (Hydrodistillation: organic - 37.3%; mineral - 38.3%/ SFE: organic - 8.4%; mineral - 4.3%). A reduction of methyl-chavicol relative proportion of essential oil obtained by SFE was observed. Cys-anethole, α-copaene, trans-cariofilene, germacrene-D, β-selinene, biciclogermacrene and spathulenol were expressed only in hydrodistillation. The extraction of essential oil by SFE presented larger yield of essential oil than hydrodistillation technique, presenting, however, these essential oils, different phytochemical profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sophisticated molecular architectures can be produced with the layer-by-layer (LbL) method, which may combine distinct materials on the same film. In this study, we take advantage of this capability to produce cholesterol amperometric biosensors from LbL films containing hemoglobin (Hb) and cholesterol oxidase in addition to the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(ethylene imine) (PEI). Following an optimization procedure, we found that an LbL film deposited onto ITO substrates, with the architecture ITO(PEI/Hb)5(PEI/COx)10, yielded a sensitivity of 93.4 μA μmol L-1 cm-2 for cholesterol incorporated into phospholipid liposomes, comparable to state-of-the-art biosensors. Hb acted as efficient electron mediator and did not suffer interference from phospholipids. Significantly, cholesterol could also be detected in real samples from chicken egg yolk, with no effects from potential interferents, including phospholipids. Taken together these results demonstrate the possible fabrication of low cost, easy-to-use cholesterol amperometric biosensors, whose sensitivity can be enhanced by further optimizing the molecular architectures of the LbL films. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R 2 =0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w-1) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n=72) using a vitrification kit for bovine embryo or slow frozen (n=69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n=92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p<0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p<0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p<0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48h of culture. © 2012 Blackwell Verlag GmbH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercritical drying (SCD) and hydrophobic ambient pressure drying (APD) aerogels were prepared from hydrolysis of tetraethoxysilane in solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123) in the range of composition below the threshold for the ordered mesoporous silica precipitation. APD was carried out after silylation of wet gels with trimethylchlorosilane (TMCS) or hexamethyldisilazane (HMDZ). The samples were analyzed by small-angle X-ray scattering and nitrogen adsorption. Wet gels are formed by mass-fractal domains, with fractal dimension close to 2, and larger pores superposing the pores belonging to the fractal structure in case of high P123 concentrations. Aerogels exhibit smaller-sized mass-fractal domains with larger mass-fractal dimension accounting for some porosity elimination on drying. The pore volume of the aerogels increases significantly with the P123 amount and it is even larger in the APD aerogels than in the SCD aerogels. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu3+ ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu3+ ions. The 29Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO2)3] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid samples were excited at 337 nm wavelength, the ligand absorbs the excitation light. Part of this energy is transferred to the Eu3+ ion, which main emission, 5D0→ 7F2, is observed in the emission spectrum at 612 nm. As the heating temperature increases to 300 C, the energy transfer is more favorable. The lifetime values showed that the Eu3+ emission is enhanced due to the energy transfer process in the powders. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC