946 resultados para photorefractive crystals
Resumo:
We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.
Resumo:
Neutron scattering experiments are fundamental to the study of magnetic order and related phenomena in a range of superconducting and magnetic materials. Traditional methods of crystal growth, however, do not yield single crystals of sufficient size for practical neutron scattering measurements. In this paper, we demonstrate the growth of relatively pure, large Y Ba 2Cu 3O 7 single crystals up to 30mm in diameter using a top seeded melt growth process. The characterization of the microstructural and magnetic properties of these crystals indicates that they contain <2% of impurity phases and, hence, exhibit only weak flux pinning behaviour. © 2012 IOP Publishing Ltd.
Resumo:
Using in-plane electric fields, the electrical induction of the uniform lying helix (ULH) alignment in chiral nematic liquid crystals is reported. This process permits spontaneous induction of the ULH alignment to give an in-plane optic axis, without the need for complex processing. Flexoelectro-optic switching is subsequently obtained by holding the in-plane electrodes at a common voltage and addressing via a third, plane-parallel electrode on a second, or upper, substrate to give a field across the device in the viewing direction. For this device, in optimized bimesogenic materials, we demonstrate full intensity modulation and sub-millisecond response times at typical device temperatures. © 2012 American Institute of Physics.
Resumo:
Mixtures of two proprietary low molar mass organosiloxane liquid crystals were studied in order to improve their alignment and optimize their electro-optic properties for telecommunication applications. Over a certain concentration range, mixtures exhibited an isotropic-chiral smectic A-chiral smectic C (Iso-SmA*-SmC*) phase sequence leading to exceptionally good alignment. At room temperature, the spontaneous polarization of these samples was reduced from 225 nC cm -2 in the pure SmC* liquid crystal to as low as 75 nC cm -2 in the mixture. Within this concentration range, the ferroelectric tilt angle could be varied between 35° and 15°, while the rise time decreased by 69.4%. The rise times were < 45 μs for moderate electric fields of ± 10 V μm -1 in the SmC* phase and ∼ 4 μs, independent of electric field, in the SmA* phase. At λ = 1550 nm, these mixtures exhibited very large extinction ratios of {\sim} 60 dB for binary switching in the SmC* phase and ∼ 55 dB continuous variable attenuation in the SmA* phase. © 2012 IEEE.
Resumo:
We present experimental results on the bulk flexoelectric coefficients e and effective elastic coefficients K of non-symmetric bimesogenic liquid crystals when the number of terminal and lateral fluoro substituents is increased. These coefficients are of importance because the flexoelastic ratio e/K governs the magnitude of flexoelectro-optic switching in chiral nematic liquid crystals. The study is carried out for two different types of linkage in the flexible spacer chain that connects the separate mesogenic units: these are either an ether or an ester unit. It is found that increasing the number of fluorine atoms on the mesogenic units typically leads to a small increase in e and a decrease in K, resulting in an enhancement of e/K. The most dramatic increase in e/K, however, is observed when the linking group is changed from ether to ester units, which can largely be attributed to an increase in e. Increasing the number of fluorine atoms does, however, increase the viscoelastic ratio and therefore leads to a concomitant increase in the response time. This is observed for both types of linkage, although the ester-linked compounds exhibit smaller viscoelastic ratios compared with their ether-linked counterparts. Highly fluorinated ester-linked compounds are also found to exhibit lower transition temperatures and dielectric anisotropies. As a result, these compounds are promising materials for use in electro-optic devices.
Resumo:
We report optically induced phase transtions occurring in two different host ferroelectric liquid crystals; SCE13 a multicomponentmixture optimised for room temperature performance, and CE8 a single component liquid crystal. These act as host liquid crystals for a novel guest azo dye, which can be made to photoisomerise using low power density U.V. illumination, resulting in dramatic changes in sample properties. We have shown that the magnitude of spontaneous polarisation of systems can be isothermally and reversibly induced or reduced, with the consequent appearance or disappearance of optical switching hysteresis. We discuss the parameters controlling the behaviour of the systems under U.V. illumination and suggest mechansims by which the transitions may occur. © 1993, Taylor & Francis Group, LLC. All rights reserved.
Resumo:
Graphene is at the center of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications. A key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes. Here we review the state of the art of graphene preparation, production, placement and handling. Graphene is just the first of a new class of two dimensional materials, derived from layered bulk crystals. Most of the approaches used for graphene can be extended to these crystals, accelerating their journey towards applications. © 2012 Elsevier Ltd.
Resumo:
We investigate the electrical properties of Silicon-on-Insulator photonic crystals as a function of doping level and air filling factor. A very interesting trade-off between conductivity and optical losses in L3 cavities is also found. © 2011 IEEE.
Resumo:
We investigate the electrical properties of silicon-on-insulator (SOI) photonic crystals as a function of both doping level and air filling factor. The resistance trends can be clearly explained by the presence of a depletion region around the sidewalls of the holes that is caused by band pinning at the surface. To understand the trade-off between the carrier transport and the optical losses due to free electrons in the doped SOI, we also measured the resonant modes of L3 photonic crystal nanocavities and found that surprisingly high doping levels, up to 1018 / cm3, are acceptable for practical devices with Q factors as high as 4× 104. © 2011 American Institute of Physics.
Resumo:
Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.
Resumo:
Fluids with controllable flow properties have gained considerable interest in the past few years. Some of these fluids such as magnetorheologic fluids are now widely applied to active dampers and valves. Although these fluids show promising properties for microsystems, their applicability is limited to the microscale since particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic liquid crystals (LCs) in microsystems. Since LCs do not contain suspended particles, they show intrinsic advantages over classic rheologic fluids in micro-applications. This paper presents a novel physical model that describes the static and the dynamic behaviour of electrorheologic LCs. The developed model is validated by comparing simulations and measurements performed on a rectangular microchannel. This assessment shows that the model presented in this paper is able to simulate both static and dynamic properties accurately. Therefore, this model is useful for the understanding, simulation and optimization of devices using LCs as electrorheological fluid. In addition, measurements performed in this paper reveal remarkable properties of LCs, such as high bandwidths and high changes in flow resistance. © 2006 IOP Publishing Ltd.
Resumo:
In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data. © 2013 American Physical Society.