966 resultados para photon counting detector
Resumo:
We investigate the capability of an egamma collider to unravel the hadronic content of the photon. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. We show that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. We illustrate their power for studying the parton distributions of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-gamma pairs, and heavy quark pairs are produced.
Resumo:
We study the two-photon propagation (TPP) modelling equations. The one-phase periodic solutions are obtained in an effective form. Their modulation is investigated by means of the Whitham method. The theory developed is applied to the problem of creation of TPP solitons on the sharp front of a long pulse.
Resumo:
We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C2H6+TMAE), radiator gas (C5F12+N2) and radiator liquid (C6F14). MeasUred critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.
Resumo:
We study the production of composite scalar leptoquarks in eγ colliders, and we show that an e+e- machine operating in its eγ mode is the best way to look for these particles in e+e- collisions, due to the hadronic content of the photon.
Resumo:
We investigate the capability of an ey collider to unravel the hadronic content of the photon. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. We show that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. We illustrate their power for studying the parton distributions of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-y pairs, and heavy quark pairs are produced.
Resumo:
We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.
Resumo:
We derive bounds on Higgs and gauge-boson anomalous interactions using the CDF data for the process pp̄ → γγγ + X. We use a linearly realized SU L(2) X U Y(1) invariant effective Lagrangian to describe the bosonic sector of the Standard Model, keeping the fermionic couplings unchanged. All dimension-six operators that lead to anomalous Higgs interactions involving γ and Z are considered. We also show the sensitivity that can be achieved for these couplings at Fermilab Tevatron upgrades. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We estimate the cross sections for the production of resonances, pion pairs, and a central cluster of hadrons in peripheral heavy-ion collisions through two-photon and double-pomeron exchange, at energies that will be available at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The effect of the impact parameter in the diffractive reactions is introduced, and by imposing the condition for realistic peripheral collisions we verify that in the case of very heavy ions the pomeron-pomeron contribution is indeed smaller than the electromagnetic one. However, they give a non-negligible background in the collision of light ions. This diffractive background will be more important at RHIC than at LHC.
Resumo:
We show that the accumulated CERN LEP-II data taken at √s = 130-206 GeV can establish more restrictive bounds on doubly charged bilepton couplings and masses than any other experiment so far. We also analyze the discovery potential of a prospective linear collider operating in both e+e- and e γ modes.
Resumo:
We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess γγ→ γγ can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process overwhelms the continuum one. It also investigated the possibility of observing a scalar resonance (the σ meson) in this process. Assuming for the σ the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.
Resumo:
We present the results of a search for the flavor-changing neutral current decay Bs 0 → μ+ μ-. using a data set with integrated luminosity of 240 pb-1 of pp̄ collisions at √s = 1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(Bs 0 → μ+ π-) ≤ 5.0 × 10-7 at the 95% C.L. assuming no contributions from the decay Bd 0 → μ+ μ- in the signal region. This limit is the most stringent upper bound on the branching fraction Bs 0 → μ+ μ- to date. © 2005 The American Physical Society.
Resumo:
A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.