948 resultados para phase I trial
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Alterações Climáticas e Políticas de Desenvolvimento Sustentável
Resumo:
Phase I
Resumo:
BACKGROUND: An LC-MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. RESULTS: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. CONCLUSION: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Resumo:
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Resumo:
Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease.
Resumo:
Background: There is currently no identified marker predicting benefit from Bev in patients with breast cancer (pts). We monitored prospectively 6 angiogenesis-related factors in the blood of advanced stage pts treated with a combination of Bev and PLD in a phase II trial of the Swiss Group for Clinical Cancer Research, SAKK.Methods: Pts received PLD (20 mg/m2) and Bev (10 mg/kg) every 2 weeks for a maximum of 12 administrations, followed by Bev monotherapy until progression or severe toxicity. Blood samples were collected at baseline, during treatment and at treatment discontinuation. Enzyme-linked immunosorbent assays (Quantikine, R&DSystems and Reliatech) were used to measure vascular endothelial growth factor (VEGF), placental growth factor (PlGF), matrix metalloproteinase 9 (MMP-9) and soluble VEGF receptors -1, -2 and -3. The natural log-transformed (ln) data for each factor was analyzed by analysis of variance (ANOVA) model to investigate differences between the mean values of the subgroups of interest (where a = 0.05), based on the best tumor response by RECIST.Results: 132 samples were collected in 41 pts. The mean of baseline ln MMP-9 levels was significantly lower in pts with tumor progression than those with tumor response (p=0.0202, log fold change=0.8786) or disease control (p=0.0035, log fold change=0.8427). Higher MMP-9 level was a significant predictor of superior progression free survival (PFS): p=0.0417, hazard ratio=0.574, 95% CI=0.336-0.979. In a multivariate cox proportional hazards model, containing performance status, disease free interval, number of tumor sites, visceral involvement and prior adjuvant chemotherapy, using stepwise regression baseline MMP-9 was still a statistically 117P Table 1. SOLTI-0701* AC01B07* NU07B1* SOR+CAP N=20 PL+CAP N=33 SOR+ GEM/CAP N=23 PL+ GEM/CAP N=27 SOR+PAC N=48 PL+PAC N=46 Baseline characteristics Age, median (range), y 49 (32-72) 53 (30-78 54 (32-69) 57 (31-82) 50 (27-80) 52 (23-74) AJCC stage, n (%) IIIB/IIIC 3 (15) 6 (18) 0 (0) 3 (11) 8 (17) 9 (20) IV 17 (85) 27 (82) 23 (100) 24 (89) 40 (83) 37 (80) Metastatic site, n (%) Non-visceral 3 (15) 6 (18) 7 (30) 6 (22) 9 (19) 17 (37) Visceral 17 (85) 27 (82) 16 (70) 21 (78) 39 (81) 29 (63) Prior metastatic chemo, n (%) 8 (40) 15 (45) 21 (91) 25 (93) - - Efficacy PFS, median, mo 4.3 2.5 3.1 2.6 5.6 5.5 HR (95% CI)_ 0.60 (0.31, 1.14) 0.57 (0.30, 1.09) 0.86 (0.50, 1.45) 1-sided P value_ 0.055 0.044 0.281 Overall survival, median, mo 17.5 16.1 Pending 14.7 18.2 HR (95% CI)_ 0.98 (0.50, 1.89) 1.11 (0.64, 1.94) 1-sided P value_ 0.476 0.352 Safety N=20 N=33 N=22 N=27 N=46 N=46 Tx-emergent Grade 3/4, n (%) 15 (75) 16 (48) 20 (91) 17 (63) 36 (78) 16 (35) Grade 3§ hand-foot skin reaction/ syndrome 8 (40) 5 (15) 8 (36) 0 (0) 14 (30) 2 (4) *Efficacy results based on intent-to-treat population and safety results based on safety population (pts who received study drug[s]); _Cox regression within each subgroup; _log-rank test within each subgroup; §maximum toxicity grade for hand-foot skin reaction/syndrome; AJCC, American Joint Committee on Cancer mittedabstractsª The Author 2011. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com Downloaded from annonc.oxfordjournals.org at Bibliotheque Cantonale et Universitaire on June 6, 2011 significant factor (p=0.0266). The results of the other measured factors were presented elsewhere.Conclusions: Higher levels of MMP-9 could predict tumor response and superior PFSin pts treated with a combination of Bev and PLD. These exploratory results justify further investigations of MMP-9 in pts treated with Bev combinations in order to assess its role as a prognostic and predictive factor.Disclosure: K. Zaman: Participation in advisory board of Roche; partial sponsoring ofthe study by Roche (the main sponsor was the Swiss Federation against Cancer (Oncosuisse)). B. Thu¨rlimann: stock of Roche; Research grants from Roche. R. vonMoos: Participant of Advisory Board and Speaker honoraria
Resumo:
Although combination chemotherapy has been shown to be more effective than single agents in advanced esophagogastric cancer, the better response rates have not fulfilled their promise as overall survival times from best combination still range between 8 to 11 months. So far, the development of targeted therapies stays somewhat behind their integration into treatment concepts compared to other gastrointestinal diseases. Thus, the review summarizes the recent advances in the development of targeted therapies in advanced esophagogastric cancer. The majority of agents tested were angiogenesis inhibitors or agents targeting the epidermal growth factor receptors EGFR1 and HER2. For trastuzumab and bevacizumab, phase III trial results have been presented recently. While addition of trastuzumab to cisplatin/5-fluoropyrimidine-based chemotherapy results in a clinically relevant and statistically significant survival benefit in HER 2+ patients, the benefit of the addition of bevacizumab to chemotherapy was not significant. Thus, all patients with metastatic disease should be tested for HER-2 status in the tumor. Trastuzumab in combination with cisplatin/5-fluoropyrimidine-based chemotherapy is the new standard of care for patients with HER2-positive advanced gastric cancer.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP) and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC) have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the European Union and the Edna McConnell Clark Foundation.
Resumo:
Previous studies carried out with Sm14 in experimental vaccination against Schistosoma mansoni or Fasciola hepatica infections were performed with recombinant Sm14 (rSm14) produced in Escherichia coli by the pGEMEX system (Promega). The rSm14 was expressed as a 40 kDa fusion protein with the major bacteriophage T7 capsid protein. Vaccination experiments with this rSm14 in animal models resulted in consistent high protective activity against S. mansoni cercariae challenge and enabled rSm14 to be included among the vaccine antigens endorsed by the World Health Organization for phase I/II clinical trials. Since the preparation of pGEMEX based rSm14 is time consuming and results in low yield for large scale production, we have tested other E. coli expression systems which would be more suitable for scale up and downstream processing. We expressed two different 6XHis-tagged Sm14 fusion proteins in a T7 promoter based plasmids. The 6XHis-tag fusions allowed rapid purification of the recombinant proteins through a Ni+2-charged resin. The resulted recombinant 18 and 16 kDa proteins were recognized by anti-Sm14 antibodies and also by antiserum against adult S. mansoni soluble secreted/excreted proteins in Western-Blot. Both proteins were also protective against S. mansoni cercariae infection to the same extent as the rSm14 expressed by the pGEMEX system.
Resumo:
 This Composite Report on the work of the Action Committees established for Phase I of the Health Reform Programme sets out a brief summary of the issues raised and conclusions reached during Phase I. It is intended as an input to the planning of subsequent phases and should not be regarded as binding in any respect. Click here to download PDF
Resumo:
This study explored the patterns of cocaine use and the lifestyles of users in Northern Ireland with the aim of providing the Department of Health, Social Services and Public Safety (DHSSPS) and treatment service providers with a better understanding of cocaine use in Northern Ireland. This primarily qualitative study was conducted in two phases. In Phase I a â?~Community Assessment Processâ?T was conducted to gain an understanding of the experiences of drug treatment professionals to cocaine use in Northern Ireland. In phase II 40 in-depth interviews were conducted with cocaine users. The study identified two types of cocaine user, these are recreational or socially integrated users and those referred for drug treatment who as a group was socially marginalized users. For the purposes of this study these users will be referred to as either recreational or treatment users. The demographic profiles of each type of user differed in a number of important respects. The recreational users were typically young, educated and anchored to a largely conventional lifestyle and whose pattern of non-work activities involved partying and drug use. Treatment users, on the other hand, generally had low level educational qualifications and were typically unemployed and living on state benefits. A number of the treatment users were either living in a hostel at the time of interview or had experienced homelessness at some time in their life. None of the recreational users reported any experience of homelessness. These distinctions, as well as differences between the groups in terms of their drug use patterns, preferences and practices, strongly suggest that in unravelling the nature of cocaine use and cocaine problems there is a need to look beyond the drug itself.This resource was contributed by The National Documentation Centre on Drug Use.
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.