962 resultados para pedalitin 6 o beta glucopyranoside
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Although neuronal nitric oxide synthase (nNOS) plays a substantial role in skeletal muscle physiology, nNOS-knockout mice manifest an only mild phenotypic malfunction in this tissue. To identify proteins that might be involved in adaptive responses in skeletal muscle of knockout mice lacking nNOS, 2D-PAGE with silver-staining and subsequent tandem mass spectrometry (LC-MS/MS) was performed using extracts of extensor digitorum longus muscle (EDL) derived from nNOS-knockout mice in comparison to C57Bl/6 control mice. Six proteins were significantly (P < or = 0.05) more highly expressed in EDL of nNOS-knockout mice than in that of C57 control mice, all of which are involved in the metabolism of reactive oxygen species (ROS). These included prohibitin (2.0-fold increase), peroxiredoxin-3 (1.9-fold increase), Cu(2+)/Zn(2+)-dependent superoxide dismutase (SOD; 1.9-fold increase), heat shock protein beta-1 (HSP25; 1.7-fold increase) and nucleoside diphosphate kinase B (2.6-fold increase). A significantly higher expression (4.1-fold increase) and a pI shift from 6.5 to 5.9 of peroxiredoxin-6 in the EDL of nNOS-knockout mice were confirmed by quantitative immunoblotting. The concentrations of the mRNA encoding five of these proteins (the exception being prohibitin) were likewise significantly (P < or = 0.05) higher in the EDL of nNOS-knockout mice. A higher intrinsic hydrogen peroxidase activity (P < or = 0.05) was demonstrated in EDL of nNOS-knockout mice than C57 control mice, which was related to the presence of peroxiredoxin-6. The treatment of mice with the chemical NOS inhibitor L-NAME for 3 days induced a significant 3.4-fold up-regulation of peroxiredoxin-6 in the EDL of C57 control mice (P < or = 0.05), but did not alter its expression in EDL of nNOS-knockout mice. ESR spectrometry demonstrated the levels of superoxide to be 2.5-times higher (P < or = 0.05) in EDL of nNOS-knockout mice than in C57 control mice while an in vitro assay based on the emission of 2,7-dichlorofluorescein fluorescence disclosed the concentration of ROS to be similar in both strains of mice. We suggest that the up-regulation of proteins that are implicated in the metabolism of ROS, particularly of peroxiredoxin-6, within skeletal muscles of nNOS-knockout mice functionally compensates for the absence of nNOS in scavenging of superoxide.
Resumo:
The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.
Resumo:
PURPOSE: To evaluate the consecutive treatment results regarding pterygium recurrence and the efficacy of exclusive strontium-/yttrium-90 beta-irradiation for primary and recurrent pterygia and to analyze the functional outcome. PATIENTS AND METHODS: Between October 1974 and December 2005, 58 primary and 21 recurrent pterygia were exclusively treated with strontium-/yttrium-90 beta-irradiation with doses ranging from 3,600 to 5,500 cGy. The follow-up time was 46.6 +/- 26.7 months, with a median of 46.5 months. RESULTS: The treatment led to a size reduction in all pterygia (p < 0.0001). Neither recurrences nor side effects were observed during therapy and follow-up in this study. Best-corrected visual acuity increased (p = 0.0064). Corneal astigmatism was reduced in recurrent pterygia (p = 0.009). CONCLUSION: Exclusive strontium-/yttrium-90 beta-irradiation of pterygia is a very efficient and well-tolerated treatment, with remarkable aesthetic and rehabilitative results in comparison to conventional treatments, especially for recurrent lesions which have undergone prior surgical excision.
Resumo:
BACKGROUND: Marfan syndrome (MFS) is caused by mutations in the fibrillin-1 gene and dysregulation of transforming growth factor-beta (TGF-beta). Recent evidence suggests that losartan, an angiotensin II type 1 blocker that blunts TGF-beta activation, may be an effective treatment for MFS. We hypothesized that dysregulation of TGF-beta might be mirrored in circulating TGF-beta concentrations. METHODS AND RESULTS: Serum obtained from MFS mutant mice (Fbn1(C1039G/+)) treated with losartan was analyzed for circulating TGF-beta1 concentrations and compared with those from placebo-treated and wild-type mice. Aortic root size was measured by echocardiography. Data were validated in patients with MFS and healthy individuals. In mice, circulating total TGF-beta1 concentrations increased with age and were elevated in older untreated Fbn1(C1039G/+) mice compared with wild-type mice (P=0.01; n=16; mean+/-SEM, 115+/-8 ng/mL versus n=17; mean+/-SEM, 92+/-4 ng/mL). Losartan-treated Fbn1(C1039G/+) mice had lower total TGF-beta1 concentrations compared with age-matched Fbn1(C1039G/+) mice treated with placebo (P=0.01; n=18; 90+/-5 ng/mL), and circulating total TGF-beta1 levels were indistinguishable from those of age-matched wild-type mice (P=0.8). Correlation was observed between circulating TGF-beta1 levels and aortic root diameters in Fbn1(C1039G/+) and wild-type mice (P=0.002). In humans, circulating total TGF-beta1 concentrations were elevated in patients with MFS compared with control individuals (P<0.0001; n=53; 15+/-1.7 ng/mL versus n=74; 2.5+/-0.4 ng/mL). MFS patients treated with losartan (n=55) or beta-blocker (n=80) showed significantly lower total TGF-beta1 concentrations compared with untreated MFS patients (P< or =0.05). CONCLUSIONS: Circulating TGF-beta1 concentrations are elevated in MFS and decrease after administration of losartan, beta-blocker therapy, or both and therefore might serve as a prognostic and therapeutic marker in MFS.
Resumo:
OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.
Resumo:
Clostridium perfringens type C-induced enteritis necroticans is a rare but often fatal disease in humans. A consistent histopathological finding is an acute, deep necrosis of the small intestinal mucosa associated with acute vascular necrosis and massive haemorrhage in the lamina propria and submucosa. Retrospective immunohistochemical investigations of tissues from a diabetic adult who died of enteritis necroticans revealed endothelial localization of C. perfringens beta-toxin in small intestinal lesions. Our results indicate that vascular necrosis might be induced by a direct interaction between C. perfringens beta-toxin and endothelial cells and that targeted disruption of endothelial cells plays a role in the pathogenesis of enteritis necroticans.
Resumo:
BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) cases may stem from potentially lethal cardiac channelopathies, with approximately half of channelopathic SIDS involving the Na(V)1.5 cardiac sodium channel. Recently, Na(V) beta subunits have been implicated in various cardiac arrhythmias. Thus, the 4 genes encoding Na(V) beta subunits represent plausible candidate genes for SIDS. OBJECTIVE This study sought to determine the spectrum, prevalence, and functional consequences of sodium channel beta-subunit mutations in a SIDS cohort. METHODS In this institutional review board-approved study, mutational analysis of the 4 beta-subunit genes, SCN1B to 4B, was performed using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing of DNA derived from 292 SIDS cases. Engineered mutations were coexpressed with SCN5A in HEK 293 cells and were whole-cell patch clamped. One of the putative SIDS-associated mutations was similarly studied in adenovirally transduced adult rat ventricular myocytes. RESULTS Three rare (absent in 200 to 800 reference alleles) missense mutations (beta3-V36M, beta3-V54G, and beta4-S206L) were identified in 3 of 292 SIDS cases. Compared with SCN5A+beta3-WT, beta3-V36M significantly decreased peak I(Na) and increased late I(Na), whereas beta3-V54G resulted in a marked loss of function. beta4-S206L accentuated late I(Na) and positively shifted the midpoint of inactivation compared with SCN5A+beta4-WT. In native cardiomyocytes, beta4-S206L accentuated late I(Na) and increased the ventricular action potential duration compared with beta4-WT. CONCLUSION This study provides the first molecular and functional evidence to implicate the Na(V) beta subunits in SIDS pathogenesis. Altered Na(V)1.5 sodium channel function due to beta-subunit mutations may account for the molecular pathogenic mechanism underlying approximately 1% of SIDS cases.
Resumo:
This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.
Resumo:
INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.
Resumo:
The $\beta$-adrenergic receptor ($\beta$AR), which couples to G$\sb{\rm s}$ and activates adenylylcyclase, has been a prototype for studying the activation and desensitization of G-protein-coupled receptors. The main objective of the present study is to elucidate the molecular mechanisms of protein kinase-mediated desensitization and internalization of the $\beta$AR.^ Activation of cAPK or PKC causes a rapid desensitization of $\beta$AR stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellular loop of the $\beta$AR, RRSSK$\sp{263}$. To determine the role of the individual serines in the cAPK- and PKC-meditated desensitizations, wild type (WT) and mutant $\beta$ARs containing the substitutions, Ser$\sp{261} \to$ A, Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and Ser$\sp{261/262} \to$ A, were constructed and stably transfected into L cells. The cAPK-mediated desensitization was decreased 70-80% by the Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and the Ser$\sp{261/262} \to$ A mutations, but was not altered by the Ser$\sp{261} \to$ A substitution, demonstrating that Ser$\sp{262}$ was the primary site of the cAPK-induced desensitization. The PMA/PKC-induced desensitization was unaffected by either of the single serine to alanine substitutions, but was reduced 80% by the double serine to alanine substitution, suggesting that either serine was sufficient to confer the PKC-mediated desensitization. Coincident stimulation of cAPK and PKC caused an additive desensitization which was significantly reduced (80%) only by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and mutant receptors demonstrated that only one of the mutants, Ser$\sp{262} \to$ A, was partially uncoupled. The Ser$\sp{262} \to$ D mutation did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized state of the receptor.^ To accomplish the in vivo phosphorylation of the $\beta$AR, we used two epitope-modified $\beta$ARs, hemagglutinin-tagged $\beta$AR (HA-$\beta$AR) and 6 histidine-tagged $\beta$AR (6His-$\beta$AR), for a high efficiency purification of the $\beta$AR. Neither HA-$\beta$AR nor 6His-$\beta$AR altered activation and desensitization of the $\beta$AR significantly as compared to unmodified wild type $\beta$AR. 61% recovery of ICYP-labeled $\beta$AR was obtained with Ni-NTA column chromatography.^ The truncation 354 mutant $\beta$AR(T354), lacking putative $\beta$ARK site(s), displayed a normal epinephrine stimulation of adenylylcyclase. Although 1.0 $\mu$M epinephrine induced 60% less desensitization in T354 as compared to wild type $\beta$AR, 1.0 $\mu$M epinephrine-mediated desensitization in T354 was 35% greater than PGE$\sb1$-mediated desensitization, which is essentially identical in both WT and T354. These results suggested that sequences downstream of residue 354 may play a role in homologous desensitization and that internalization may be attributed to the additional desensitization besides the cAMP mechanism in T354 $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
The objective of this study is to test the hypothesis that partial agonists produce less desensitization because they generate less of the active conformation of the $\beta\sb2$-adrenergic receptor ($\beta$AR) (R*) and in turn cause less $\beta$AR phosphorylation by beta adrenergic receptor kinase ($\beta$ARK) and less $\beta$AR internalization. In the present work, rates of desensitization, internalization, and phosphorylation caused by a series of $\beta$AR agonists were correlated with a quantitative measure, defined as coupling efficiency, of agonist-dependent $\beta$AR activation of adenylyl cyclase. These studies were preformed in HEK-293 cells overexpressing the $\beta$AR with hemagglutinin (HA) and 6-histidine (6HIS) epitopes introduced into the N- and C-termini respectively. Agonists chosen provided a 95-fold range of coupling efficiencies, and, relative to epinephrine, the best agonist, (100%) were fenoterol (42%), albuterol (4.9%), dobutamine (2.5%) and ephedrine (1.1%). At concentrations of these agonists yielding $>$90% receptor occupancy, the rate and extent of the rapid phase (0-30 min) of agonist induced desensitization of adenylyl cyclase followed the same order as coupling efficiency, that is, epinephrine $\ge$ fitnoterol $>$ albuterol $>$ dobutamine $>$ ephedrine. The rate of internalization, measured by a loss of surface receptors during desensitization, with respect to these agonists also followed the same order as the desensitization and exhibited a slight lag. Like desensitization and internalization, $\beta$AR phosphorylation exhibited a dependency on agonist strength. The two strongest agonists epinephrine and fenoterol provoked 11 to 13 fold increases in the level of $\beta$AR phosphorylation after just 1 min, whereas the weakest agonists dobutamine and ephedrine caused only 3 to 4 fold increases in phosphorylation. With longer treatment times, the level of $\beta$AR phosphorylation declined with the strong agonists, but progressively increased with the weaker partial agonists. The major conclusion drawn from this study is that the occupancy-dependent rate of receptor phosphorylation increases with agonist coupling efficiencies and that this is sufficient to explain the desensitization, internalization, and phosphorylation data obtained.^ The mechanism of activation and desensitization by the partial $\beta$AR agonist salmeterol was also examined in this study. This drug is extremely hydrophobic and its study presents possibly unique problems. To determine whether salmeterol induces desensitization of the $\beta$AR its action has been studied using our system. Employing the use of reversible antagonists it was found that salmeterol, which has an estimated coupling efficiency near that of albuterol caused $\beta$AR desensitization. This desensitization was much reduced relative to epinephrine. Consistent with its coupling efficiency, it was found to be similar to albuterol in its ability to induce internalization and phosphorylation of the $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
The biochemical determinants of cytotoxicity of the purine nucleoside analog, 9-(beta)-D-xylofuranosyladenine (xyl-A) were studied in wild-type Chinese hamster ovary cells and in nucleoside kinase deficient mutants. It was found that {('3)H}xyl-A was readily phosphorylated to the triphosphate level in both the wild-type and deoxycytidine kinase deficient mutant, but not by the adenosine kinase deficient cells. Values for the apparent Km and Vmax of this uptake process were 43.9 (mu)M and 118.7 nmol/min/10('9) cells, respectively. Cloning procedures indicated that the viability of CHO cells was decreased 90 per cent by a 5-hr incubation with 10 (mu)M xyl-A. However, the toxicity of xyl-A was increased 100-fold by the addition of a nontoxic concentration (10 (mu)M) of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) to the medium. High-pressure liquid chromatographic analysis indicated that after 5 hr, the concentration of 9-(beta)-D-xylofuranosyladenine 5'-triphosphate (xyl-ATP) in cells incubated with xyl-A plus EHNA was 2.0 mM, four times greater than in those cells incubated with xyl-A alone. Incubation with xyl-A plus EHNA had no significant effect on the cellular concentrations of 5-phosphoribosyl-1-pyrophosphate after 1 hr whereas, treatment with 3'-dexoyadenosine (cordycepin) decreased the concentration of this metabolite. Determinations of the cellular nucleoside triphosphates indicated that under conditions that resulted in an intracellular accumulation of 500 (mu)M xyl-ATP, the endogenous concentrations of neither the ribonucleoside triphosphates nor deoxyribonucleoside triphosphates were significantly different from those of control cells. The ID(,50) for {('3)H}thymidine incorporation into DNA, 105 (mu)M xyl-ATP, was four-fold less than the ID(,50) for {('3)H}uridine incorporation into RNA suggesting that the process of DNA synthesis is more sensitive to the presence of xyl-ATP. When removed from exogenous xyl-A, CHO cells failed to recover their ability to synthesize RNA and DNA, although the intracellular xyl-ATP concentration decreased to less than 35 (mu)M. The selective inhibition of RNA synthesis by 6-azauridine did not prevent the expression of toxicity by xyl-ATP. However, the selective inhibition of DNA synthesis by ara-C significantly spared toxicity in cells that had accumulated an otherwise lethal concentration of xyl-ATP. It is shown that in cells which had accumulated 1.27 mM {('3)H}xyl-ATP, {('3)H}xyl-A was found to terminate cellular RNA chains at a frequency of 1.42 (mu)mol of {('3)H}xyl-A 3' termini per mol of mononucleotide. These results indicate that a general mechanism for the toxicity of xyl-A to CHO cells includes the cellular accumulation of xyl-ATP, which serves as a substrate for RNA synthesizing enzymes and subsequently is incorporated into nascent RNA transcripts as a chain terminator. A specific mechanism involving the premature termination of RNA primers required for the initiation of DNA synthesis is proposed to account for the inhibitory action of xyl-ATP on DNA synthesis. ^
Resumo:
INTRODUCTION Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. METHODS Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). RESULTS Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. CONCLUSIONS Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.
Resumo:
Chemical studies of superheavy elements require fast and efficient techniques, due to short half-lives and low production rates of the investigated nuclides. Here, we advocate for using a tubular flow reactor for assessing the thermal stability of the Sg carbonyl complex – Sg(CO)6. The experimental setup was tested with Mo and W carbonyl complexes, as their properties are established and supported by theoretical predictions. The suggested approach proved to be effective in discriminating between the thermal stabilities of Mo(CO)6 and W(CO)6. Therefore, an experimental verification of the predicted Sg–CO bond dissociation energy seems to be feasible by applying this technique. By investigating the effect of 104,105Mo beta-decay on the formation of 104,105Tc carbonyl complex, we estimated the lower reaction time limit for the metal carbonyl synthesis in the gas phase to be more than 100 ms. We examined further the influence of the wall material of the recoil chamber, the carrier gas composition, the gas flow rate, and the pressure on the production yield of 104Mo(CO)6, so that the future stability tests with Sg(CO)6 can be optimized accordingly.