777 resultados para parallel-machine
Resumo:
A look is taken here at how the use of implant technology is rapidly diminishing the effects of certain neural illnesses and distinctly increasing the range of abilities of those affected. An indication is given of a number of problem areas in which such technology has already had a profound effect, a key element being the need for a clear interface linking the human brain directly with a computer. In order to assess the possible opportunities, both human and animal studies are reported on. The main thrust of the paper is however a discussion of neural implant experimentation linking the human nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them, in some cases via the internet, and feedback to the brain was obtained from such as the fingertips of a robot hand, ultrasonic (extra) sensory input and neural signals directly from another human's nervous system. Consideration is given to the prospects for neural implant technology in the future, both in the short term as a therapeutic device and in the long term as a form of enhancement, including the realistic potential for thought communication potentially opening up commercial opportunities. Clearly though, an individual whose brain is part human - part machine can have abilities that far surpass those with a human brain alone. Will such an individual exhibit different moral and ethical values to those of a human.? If so, what effects might this have on society?
Resumo:
In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.
Resumo:
In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.