957 resultados para oxidation reactions
Resumo:
The effect of phenobarbital on the rates of the synthesis of the protein and heme moieties of cytochrome P-450 has been studied. For this purpose, cytochrome P-450 has been partially purified as its P-420 derivative and the labeled amino acid incorporation into the protein has been studied after subjecting a partially purified preparation to sodium dodecyl sulfate gel electrophoresis. The incorporation studies into the protein species after sodium dodecyl sulfate gel electrophoresis reveal that the drug primarily accelerates the rate of apoprotein synthesis followed by an increase in the rate of heme synthesis. The messenger for apocytochrome P-450 appears to be fairly stable.
Resumo:
Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.
Resumo:
The reaction of octachlorocyclotetraphosphazatetraene, N4P4Cl8, with ethylamine has been investigated. Seven derivatives, N4P4Cl8–n(NHEt)n[n= 1, 2 (two isomers), 3, 4 (two isomers), and 8] have been isolated and their structures established by 1H and 31P n.m.r. spectroscopy. A non-geminal chlorine atom replacement scheme is observed. Attempts to prepare penta- or hexa-ethylamino derivatives were unsuccessful: only sticky, non-crystalline resins were obtained from 1 : 10 or 1 : 12 reactions. The preparation and n.m.r. spectroscopic data of mixed ethylamino(methoxy)-derivatives. N4P4(NHEt)–8-n(OMe)n[n= 6, 4 (two isomers)], and an ethylamino-(dimethylamino)-derivative, N4P4(NHEt)2(NMe2)6, are generally consistent with the proposed structures. The reaction pattern is discussed.
Resumo:
1. Cell-free extracts of Arthrobacter synephrinum catalyse the oxidation of 3,4-dihydroxy-phenylacetate. 2. The product of oxidation was characterized as 2-hydroxy-5-carboxymethylmuconate semialdehyde from its chemical behaviour as well as from nuclear-magnetic-resonance spectra. 3. A 3,4-dihydroxyphenylacetate 2,3-dioxygenase (EC 1.13.11.15) was partially purified from A. synephrinum. 4. The enzyme had a Km of 25 micrometer towards its substrate and exhibited typical Michaelis-Menten kinetics. 5. The enzyme also catalysed the oxidation of 3,4-dihydroxymandelate and 3,4-dihydroxyphenylpropionate, at reaction rates of 0.5 and 0.04 respectively of that for 3,4-dihydroxyphenylacetate. 6. The enzyme was sensitive to treatment with thiol-specific reagents. 7. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography was approx. 282000.
Resumo:
The kinetics of pseudocumene oxidation in the vapor phase with tin vanadate as catalyst have been studied over the following ranges of the variables: Oxygen concentration, 0.909 to 2.857 mole/m3; pseudocumene concentration, 0.071 to 0.125 mole/m3; temperature, 260 to 320°C; space time, 22.5 to 90 × 104 g. catalyst/mole sec. Oxidation-reduction models have been found to describe the kinetics adequately. The mechanism is found to remain the same throughout the temperature range covered.
Resumo:
Ethanol oxidation in the vapor phase was studied in an isothermal flow reactor using thorium molybdate catalyst in the temperature range 220–280 °C. Under these conditions the catalyst was highly selective to acetaldehyde formation. The rate data were well represented by a steady state two-stage redox model given by the equation: View the MathML source The parameters of the above model were estimated by linear and nonlinear least squares methods. In the case of nonlinear estimation the sum of the squares of residuals decreased. The activation energies and preexponential factors for the reduction and oxidation steps of the model, estimated by nonlinear least squares technique are: 9.47 kcal/mole, 9.31 g mole/ (sec) (g cat) (atm) and 9.85 kcal/mole, 0.17 g mole/(sec) (g cat) (atm)0.5, respectively. Oxidations of ethanol and methanol over thorium molybdate catalyst were compared under similar conditions.
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
Rates of oxidation of p-xylene were measured in the temperature range 320 to 420 °C using tin vanadate as catalyst in an isothermal differential flow reactor. The amounts of p-xylene converted were determined by analyzing the main products (p-tolualdehyde, maleic anhydride, p-toluic acid and traces of terephthalic acid). Negligible amounts of products of complete combustion were formed. The reaction rates obtained for p-xylene followed the relation, Image based on the redox model. The mechanism of the reaction was determined by conducting different sets of experiments and it was found that the reaction followed the parallel-consecutive mechanism, in which p-tolualdehyde and maleic anhydride were formed from the parallel route whereas p-toluic acid was formed from the consecutive route.
Resumo:
Direct synthesis of unsymmetrical beta-sulfonamido disulfides by ring-opening of aziridines by using benzyltriethyl-ammonium tetrathiomolybdate 1 as a sulfur transfer reagent in the presence of symmetrical disulfides as thiol equivalents has been reported. Reaction of benzyl and alkyl disulfides gave unsymmetrical beta-sulfonamido disulfides as the only product in very good yields. From the Study, it has been observed that aryl disulfides containing p-NO2, p-Cl, and p-CN led to the formation of the corresponding beta-aminosulfides as the exclusive products. However, un-substituted aryl disulfides and the one containing electron-donating substituents (p-Me) provide a mixture of beta-sulfonamido mono- and disulfides as the products.
Resumo:
Polyvanadate solutions obtained by extracting vanadium pentoxide with dilute alkali over a period of several hours contained increasing amounts of decavanadate as characterized by NMR and ir spectra. Those solutions having a metavanadate:decavanadate ratio in the range of 1-5 showed maximum stimulation of NADH oxidation by rat liver plasma membranes. Reduction of decavanadate, but not metavanadate, was obtained only in the presence of the plasma membrane enzyme system. High simulation of activity of NADH oxidation was obtained with a mixture of the two forms of vanadate and this further increased on lowering the pH. Addition of increasing concentrations of decavanadate to metavanadate and vice versa increased the stimulatory activity, reaching a maximum when the metavanadate:decavanadate ratio was in the range of 1-5. Increased stimulatory activity can also be obtained by reaching these ratios by conversion of decavanadate to metavanadate by alkaline phosphate degradation, and of metavanadate to decavanadate by acidification. These studies show for the first time that both deca and meta forms of vanadate present in polyvanadate solutions are needed for maximum activity of NADH oxidation.
Resumo:
Oxidation of spiroketones 3a–f with DDQ in dry benzene gave tropone derivatives 4a–f and DDHQ esters 5a–f (cis -cis isomer 6a–f, (cis -cis isomer 7a–f). While the aryl substituted spirokeone 17a gave a 2:1 mixture of 19a and the corresponding trans -trans isomer, the aryl substituted spiroketones 17b–d gave exclusively trans-trans isomers 19b–d. Heating acid chloride of acid 9c with DDHQ resulted in compounds 4a and 7a, thus confirming the structures assigned. Mechanism of formation of these compounds has been rationalised. A detailed study of 2D 1H-1H COSY, 1H-13C COSY, HMBC and 2D NOESY of compound 7d led to complete assignment of 1H and 13C NMR signals and its solution conformation.
Resumo:
The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.