938 resultados para nitrogen assimilating enzymes
Resumo:
This article describes the presence of two new forms of a thrombin-like enzyme, both with apparent molecular masses of 38 kDa, in Bothrops atrox venom. Both share the ability to cleave fibrinogen into fibrin and to digest casein. Both present identical Km on the substrate BApNA. Their N-terminal amino acid sequences are identical for 26 residues, sharing 80% homology with batroxobin and flavoxobin. Two groups of monoclonal antibodies (mAbs) raised against the purified enzyme forms recognized different epitopes of the putative corresponding enzymes present in B. atrox crude venom. On Western blotting analysis of B. atrox crude venom, mAbs 5DB2C8, 5AA10 and 5CF11, but not mAbs 6CC5 and 6AD2-G5, revealed two or more protein bands ranging from 25 to 38 kDa. By immunoprecipitation assays, the 6AD2-G5 mAb was able to precipitate protein bands of 36-38 kDa from B. atrox, B. leucurus, B. pradoi, B. moojeni, B. jararaca and B. neuwiedii crude venoms. Fibrinogen-clotting activity was inhibited when the same venom specimens were pre-incubated with mAb 6AD2-G5, except for B. jararaca and B. neuwiedii.
Resumo:
Different nitrogen oxide removal technologies for rotary lime kiln are studied in this thesis, the main focus being in commercial technologies. Post-combustion methods are investigated in more detail as potential possible NOx removal with combustion methods in rotary lime kiln is more limited or primary methods are already in use. However, secondary methods as NOx scrubber, SNCR or SCR technologies are not listed as the Best Available Technologies defined by European Union. BAT technologies for NOx removal in lime kiln are (1) Optimised combustion and combustion control, (2) Good mixing of fuel and air, (3) Low-NOx burner and (4) Fuel selection/low-N fuel. SNCR method is the most suitable technique for NOx removal in lime kiln when NOx removal from 50 % to 70 % is required in case primary methods are already in use or cannot be applied. In higher removal cases ammonia slip is an issue in SNCR. By using SCR better NOx reduction can be achieved but issues with catalyst materials are expected to arise because of the dust and sulphur dioxide which leads to catalyst poison formation in lower flue gas temperatures. NOx scrubbing has potential when simultaneous NOx and SO2 removal is required. The challenge is that NO cannot be scrubbed directly, but once it is oxidized to NO2 or further scrubbing can be performed as the solubility of NO2 is higher. Commercial installations have not been made regarding SNCR, SCR or NOx scrubbing regarding rotary lime kiln. For SNCR and SCR the closest references come from cement industry.
Resumo:
The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Resumo:
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 µg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
Resumo:
The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis.
Resumo:
The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.
Resumo:
Polyketides are a diverse group of natural products produced in many bacteria, fungi and plants. These metabolites have diverse biological activities and several members of this group are in clinical use as antibiotics, anticancer agents, antifungals and immunosuppressants. The different polyketides are produced by polyketide synthases, which catalyze the condensation of extender units into various polyketide scaffolds. After the biosynthesis of the polyketide backbone, more versatility is created to the molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and glycosylations. Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the biosynthesis of natural products. In the experimental section, functions of homologous FPMO and SDR tailoring enzymes from five different angucycline pathways were studied in vitro. The results revealed how different angucyclinones are produced from a common intermediate and that FPMO JadH and SDR LanV are responsible for the divergence of jadomycins and landomycins, respectively, from other angucyclines. Structural studies of these tailoring enzymes revealed differences between homologous enzymes and enabled the use of structure-based protein engineering. Mutagenesis experiments gave important information about the enzymes behind the evolution of distinct angucycline metabolites. These experiments revealed a correlation between the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case of LanV, analysis of mutagenesis results revealed that the difference between the stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly related to the conformation of the substrate rather than to the structure of the enzyme. Altogether, the results presented here have improved our knowledge about different steps of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes behind these steps. This information can hopefully be used to modify these enzymes to produce novel metabolites, which have new biological targets or possess novel modes-of-action. The understanding of these unusual enzyme mechanisms is also interesting to enzymologists outside the field of natural product research.
Resumo:
Chronic stress is associated with the development of cardiovascular diseases. The sympathoneural system plays an important role in the regulation of cardiac function both in health and disease. In the present study, the changes in gene expression of the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) and protein levels in the right and left heart auricles of naive control and long-term (12 weeks) socially isolated rats were investigated by Taqman RT-PCR and Western blot analysis. The response of these animals to additional immobilization stress (2 h) was also examined. Long-term social isolation produced a decrease in TH mRNA level in left auricles (about 70%) compared to the corresponding control. Expression of the DBH gene was markedly decreased both in the right (about 62%) and left (about 81%) auricles compared to the corresponding control, group-maintained rats, whereas PNMT mRNA levels remained unchanged. Exposure of group-housed rats to acute immobilization for 2 h led to a significant increase of mRNA levels of TH (about 267%), DBH (about 37%) and PNMT (about 60%) only in the right auricles. Additional 2-h immobilization of individually housed rats did not affect gene expression of these enzymes in either the right or left auricle. Protein levels of TH, DBH and PNMT in left and right heart auricles were unchanged either in both individually housed and immobilized rats. The unchanged mRNA levels of the enzymes examined after short-term immobilization suggest that the catecholaminergic system of the heart auricles of animals previously exposed to chronic psychosocial stress was adapted to maintain appropriate cardiovascular homeostasis.
Resumo:
Angiotensin-converting enzymes 1 (ACE1) and 2 (ACE2) are key enzymes of the renin-angiotensin system, which act antagonistically to regulate the levels of angiotensin II (Ang II) and Ang-(1-7). Considerable data show that ACE1 acts on normal skeletal muscle functions and architecture. However, little is known about ACE1 levels in muscles with different fiber compositions. Furthermore, ACE2 levels in skeletal muscle are not known. Therefore, the purpose of this study was to characterize protein expression and ACE1 and ACE2 activities in the soleus and plantaris muscles. Eight-week-old female Wistar rats (N = 8) were killed by decapitation and the muscle tissues harvested for biochemical and molecular analyses. ACE1 and ACE2 activities were investigated by a fluorometric method using Abz-FRK(Dnp)P-OH and Mca-YVADAPK(Dnp)-OH fluorogenic substrates, respectively. ACE1 and ACE2 protein expression was analyzed by Western blot. ACE2 was expressed in the skeletal muscle of rats. There was no difference between the soleus (type I) and plantaris (type II) muscles in terms of ACE2 activity (17.35 ± 1.7 vs 15.09 ± 0.8 uF·min-1·mg-1, respectively) and protein expression. ACE1 activity was higher in the plantaris muscle than in the soleus (71.5 ± 3.9 vs 57.9 ± 1.1 uF·min-1·mg-1, respectively). Moreover, a comparative dose-response curve of protein expression was established in the soleus and plantaris muscles, which indicated higher ACE1 levels in the plantaris muscle. The present findings showed similar ACE2 levels in the soleus and plantaris muscles that might result in a similar Ang II response; however, lower ACE1 levels could attenuate Ang II production and reduce bradykinin degradation in the soleus muscle compared to the plantaris. These effects should enhance the aerobic capacity necessary for oxidative muscle activity.
Resumo:
Keratinases are enzymes of great importance involved in pathogenic processes of some fungi. They also have a widespread ecological role since they are responsible for the degradation and recycling of keratin. On the one hand, studying them furthers our knowledge of pathogenicity mechanisms, which has important implications for human health, and on the other hand, understanding their ecological role in keratin recycling has biotechnological potential. Here, a wild-type keratinolytic Candida parapsilosis strain isolated from a poultry farm was treated with ethyl methanesulfonate in order to generate mutants with increased keratinase activity. Mutants were then cultured on media with keratin extracted from chicken feathers as the sole source of nitrogen and carbon. Approximately 500 mutants were screened and compared with the described keratinolytic wild type. Three strains, H36, I7 and J5, showed enhanced keratinase activity. The wild-type strain produced 80 U/mL of keratinolytic activity, strain H36 produced 110 U/mL, strain I7, 130 U/mL, and strain J5, 140 U/mL. A 70% increase in enzyme activity was recorded for strain J5. Enzymatic activity was evaluated by zymograms with proteic substrates. A peptidase migrating at 100 kDa was detected with keratin, bovine serum albumin and casein. In addition, a peptidase with a molecular mass of 50 kDa was observed with casein in the wild-type strain and in mutants H36 and J5. Gelatinase activity was detected at 60 kDa. A single band of 35 kDa was found in wild-type C. parapsilosis and in mutants with hemoglobin substrate.
Resumo:
Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.
Resumo:
It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.
Resumo:
The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. Current studies on lipase production by submerged fermentation involve the use of agro-industrial residues aiming at increasing economic attractiveness. Based on these aspects, the objective of this work was to investigate lipase production by Penicillium verrucosum in submerged fermentation using a conventional medium based on peptone, yeast extract, NaCl and olive oil, and an industrial medium based on corn steep liquor, Prodex Lac (yeast hydrolysate), NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Kinetics of lipase production was evaluated and the highest enzymatic activities, of 3.15 and 2.22 U.mL-1, were observed when conventional and industrial media were used, respectively. The enzymatic extract showed optimal activity in the range from 30 to 40 °C and at pH 7.0. Although the industrial medium presents economical advantages over the conventional medium, the presence of agro-industrial residues rich in nitrogen and other important nutrients seemed to contribute to a reduction in lipase activity.
Resumo:
The high demands for sugars and the development of enzymatic technology have increased the production of sweeteners, especially for glucose and fructose syrups. This work describe a technology for glucose and fructose syrups from Brazilian cassava starch using enzymes produced by soil microrganisms isolated from the Brazilian Cerrado soil. Firstly, Aspergillus niger and Streptomyces sp. were isolated from the soil and used as glucoamylase (GA) and glucose isomerase (GI) producer sources. After characterization, GA and GI exhibited optimum pH 4.5 and 8.0, respectively. GA showed maximum activity at 60 ºC and GI at 85 ºC. GA and GI retained 65 and 80%, respectively, of initial activity after 180 minutes of incubation at 60 ºC. The kinetic parameters Km and Vmáx were 0.476 (mg.mL-1) and 8.58 (µmol/minute) for GA and 0.082 (M) and 48.20 (µmol/minute) for GI. The maximum glucose syrups production occurred after 24 hours of reaction with a 98% yield. The production of fructose syrups with 42% (w/v) was reached after 96 hours of reaction.
Resumo:
Cajá-manga, also known as golden apple and hog-plum, is an exotic fruit native from Îles de la Société (French Polynesia), which was first introduced in Brazil in 1985. The pulp of ripe fruit was treated with the commercial enzymatic pool and its effect was evaluated in terms of yield, as well as the physical properties viscosity, turbidity and color (L* values). Response surface methodology was used and three levels were adopted for the independent variables temperature (30, 40, and 50 ºC), incubation time (30, 60 and 90 minutes) and enzyme concentration (0.01, 0.05, 0.09 v/v%). A central composite statistical design was used to guide the experimental work. The enzyme treatment highly increased both juice yield (up to 56%) and color (up to 8.6%) and strongly decreased viscosity (up to 57.4%), clarity (up to 77%) and turbidity (up to 85.5%). Incubation time was the most interacting facto, whereas temperature was the least one. Optimization analysis was carried out to reduce enzyme concentration to a minimum by superposing the contour plots of the tested properties, and the recommended ranges of the variables enzyme concentration, process temperature and incubation time were, respectively, 0.042-0.068%, 47.0-49.0 ºC and 82-90 minutes.