583 resultados para nitro-olefinas
Resumo:
A green fluorescent 12-aza-epothilone (azathilone) derivative has been prepared through the attachment of the 4-nitro-2,1,3-benzoxadiazole (NBD) fluorophore to the 12-nitrogen atom of the azamacrolide core structure. While less potent than natural epothilones or different N12-acylated azathilone derivatives, NBD-azathilone (3) promotes tubulin assembly, inhibits cancer cell proliferation in vitro and arrests the cell cycle at the G2/M transition. Most significantly, the binding of 3 to cellular microtubules (MTs) could be directly visualized by confocal fluorescence microscopy. Based on competition binding experiments with laulimalide-stabilized MTs in vitro, the N12-Boc substituted azathilone 1, Epo A, and NBD-azathilone (3) all interact with the same tubulin-binding site. Computational studies provided a structural model of the complexes between beta-tubulin and 1 or 3, respectively, in which the NBD moiety of 3 or the BOC moiety of 1 directly and specifically contribute to MT binding. Collectively, these data demonstrate that the cellular effects of 3 and, by inference, also of other azathilones are the result of their interactions with the cellular MT network.
Resumo:
The SnCl2-mediated reduction of nitro groups in 2-nitro-4-(2-nitro-benzylidene)-alkanoates and 4-nitro-2-(2-nitro-alkylidene)-alkanoates afforded via SN2′ reaction of ethyl nitroacetate and nitroethane with the acetyl derivatives of Baylis-Hillman adducts afforded by 2-nitro-substituted benzaldehydes leads to facile synthesis of substituted 1H-1-benzazepine and 3H-1-benzazepine. During the study an unprecedented rearrangement of 2-alkoxycarbonyl-1H-benzazepine to substituted isoquinoline has been observed.
Resumo:
A general and practical approach to the synthesis of substituted isoxazolo[4,3-c]quinolines from the substituted isoxazolines afforded by 1,3-dipolar cycloaddition between 2-nitrobenzonitrile oxide and chalcones is described. The SnCl2.2H2O-mediated reduction of the nitro group followed by intramolecular cyclization involving the amino and the keto groups in these substrates furnished a mixture of isoxazolo[4,3- c]-quinolines and 3,5-dihydro-isoxazolo[4,3-c]quinoline. In contrast, the reduction of these substrates with Fe-AcOH unexpectedly yielded 3-benzoyl-4-quinolinamine derivatives.
Resumo:
An alternate approach to densely substituted quinolines from the products of SN2 nucleophilic substitution reaction between the acetyl derivatives of the Baylis-Hillman adducts obtained from 2-nitrobenzaldehydes and the carbonyl group containing carbon nucleophiles is described. Treatment of these compounds with SnCl2, trigger a tandem reaction wherein reduction of the nitro group is followed by a remarkably regioselective intramolecular cyclization and subsequent dehydrogenation to afford 4-(substituted vinyl)-quinolines.
Resumo:
The antimycobacterial activity of nitro/ acetamido alkenol derivatives and chloro/ amino alkenol derivatives has been analyzed through combinatorial protocol in multiple linear regression (CP-MLR) using different topological descriptors obtained from Dragon software. Among the topological descriptor classes considered in the study, the activity is correlated with simple topological descriptors (TOPO) and more complex 2D autocorrelation descriptors (2DAUTO). In model building the descriptors from other classes, that is, empirical, constitutional, molecular walk counts, modified Burden eigenvalues and Galvez topological charge indices have made secondary contribution in association with TOPO and / or 2DAUTO classes. The structure-activity correlations obtained with the TOPO descriptors suggest that less branched and saturated structural templates would be better for the activity. For both the series of compounds, in 2DAUTO the activity has been correlated to the descriptors having mass, volume and/ or polarizability as weighting component. In these two series of compounds, however, the regression coefficients of the descriptors have opposite arithmetic signs with respect to one another. Outwardly these two series of compounds appear very similar. But in terms of activity they belong to different segments of descriptor-activity profiles. This difference in the activity of these two series of compounds may be mainly due to the spacing difference between the C1 (also C6) substituents and rest of the functional groups in them.
Resumo:
Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction conductance by employing two complementary techniques, namely scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques, based on the studies published in the literature and important results from our own work. We compared conductance studies for conventional anchoring groups described earlier with the molecular junctions formed through π-interactions with the electrode surface (Au, Pt, Ag) and we also summarized recent developments in the formation of highly conducting covalent Au–C σ-bonds using oligophenyleneethynylene (OPE) and an alkane molecular backbone. Specifically, we focus on the electron transport properties of diaryloligoyne, oligophenyleneethynylene (OPE) and/or alkane molecular junctions composed of several traditional anchoring groups, (dihydrobenzo[b]thiophene (BT), 5-benzothienyl analogue (BTh), thiol (SH), pyridyl (PY), amine (NH2), cyano (CN), methyl sulphide (SMe), nitro (NO2)) and other anchoring groups at the solid/liquid interface. The qualitative and quantitative comparison of the results obtained with different anchoring groups reveals structural and mechanistic details of the different types of single molecular junctions. The results reported in this prospective may serve as a guideline for the design and synthesis of molecular systems to be used in molecule-based electronic devices.
Resumo:
The synthesis of the monomeric building block 13 and its constitutional isomer 12 of a new type of DNA analog, distamycin-NA, is presented (Schemes 1 and 2). This building block consists of a uracil base attached to a thiophene core unit via a biaryl-like axis. Next to the biaryl-like axis on the thiophene chromophore, a carboxy and an amino substituent are located allowing for oligomerization via peptide coupling. The proof of constitution and the conformational preferences about the biaryl-like axis were established by means of X-ray analyses of the corresponding nitro derivatives 10 and 11. Thus, the uracil bases are propeller-twisted relative to the thiophene core, and bidentate H-bonds occur between two uracil bases in the crystals. The two amino-acid building blocks 12 and 13 were coupled to give the dimers 15 and 16 using dicyclohexylcarbodiimide (DCC) in THF/LiCl and DMF, respectively. While the dimer 15 showed no atropisomerism on the NMR time scale at room temperature, its isomer 16 occurred as distinct diastereoisomers due to the hindered rotation around its biaryl-like axis. Variable-temperature 1H-NMR experiments allowed to determine a rotational barrier of 19 ± 1 kcal/mol in 16. The experimental data were complemented by AM1 calculations.
Resumo:
Nitazoxanide (NTZ) and other thiazolides are effective against intracellular protozoa’s, anaerobic or micro aerophilic bacteria, viruses and tumour cells. Concerning their potential effects against Escherichia coli, the published results are scarce and conflicting. In order to investigate whether thiazolides are effective against aerobically growing E. coli, we examined mutants of the TolC efflux system for their sensitivity to nitro thiazolides, including NTZ, and bromothiazolides. We determined the susceptibilities of tolC mutants to various thiazolides and found that tolC mutants of E. coli were susceptible to both nitro thiazolides and bromothiazolides indicating a mechanism of action different from nitro reduction. Moreover, we showed that thiazolides induced a spy:lacZ transcriptional fusion indicating that thiazolides generate stress in the bacterial envelope. Moreover, wild type strains became susceptible to thiazolides if the tolC efflux system was inhibited. Taken together, our results show that thiazolides are effective against E. coli if their export from the cells is impaired.
Resumo:
NADPH cytochrome P-450 reductase releases FMN and FAD upon dilution into slightly acidic potassium bromide. The flavins are released with positive cooperativity. Dithiothreitol protects the FAD dependent cytochrome c reductase activity against inactivation by free radicals. Behavior in potassium bromide is sensitive to changes in the pH. High performance hydroxylapatite resolved the FAD dependent reductase from holoreductase. For 96% FAD dependent reductase, the overall yield was 12%.^ High FAD dependence was matched by a low FAD content, with FAD/FMN as low as 0.015. There were three molecules of FMN for every four molecules of reductase. The aporeductase had negligible activity towards cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, oxygen and acetyl pyridine adenine dinucleotide phosphate. A four minute incubation in FAD reconstituted one half to all of the specific activity, per milligram protein, of untreated reductase, depending upon the substrate. After a two hour reconstitution, the reductase eluted from hydroxylapatite at the location of holoreductase. It had little flavin dependence, was equimolar in FMN and FAD, and had nearly the specific activity (per mole flavin) of untreated reductase.^ The lack of activity and the ability of FMN to also reconstitute suggest that the redox center of FAD is essential for catalysis, rather than for structure. Dependence upon FAD is consistent with existing hypotheses for the catalytic cycle of the reductase. ^
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.
Resumo:
Purines can modify ciliary epithelial secretion of aqueous humor into the eye. The source of the purinergic agonists acting in the ciliary epithelium, as in many epithelial tissues, is unknown. We found that the fluorescent ATP marker quinacrine stained rabbit and bovine ciliary epithelia but not the nerve fibers in the ciliary bodies. Cultured bovine pigmented and nonpigmented ciliary epithelial cells also stained intensely when incubated with quinacrine. Hypotonic stimulation of cultured epithelial cells increased the extracellular ATP concentration by 3-fold; this measurement underestimates actual release as the cells also displayed ecto-ATPase activity. The hypotonically triggered increase in ATP was inhibited by the Cl−-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in both cell types. In contrast, the P-glycoprotein inhibitors tamoxifen and verapamil and the cystic fibrosis transmembrane conductance regulator (CFTR) blockers glybenclamide and diphenylamine-2-carboxylate did not affect ATP release from either cell type. This pharmacological profile suggests that ATP release is not restricted to P-glycoprotein or the cystic fibrosis transmembrane conductance regulator, but can proceed through a route sensitive to NPPB. ATP release also was triggered by ionomycin through a different NPPB-insensitive mechanism, inhibitable by the calcium/calmodulin-activated kinase II inhibitor KN-62. Thus, both layers of the ciliary epithelium store and release ATP, and purines likely modulate aqueous humor flow by paracrine and/or autocrine mechanisms within the two cell layers of this epithelium.
Resumo:
Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.