827 resultados para neuron


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurodegenerative diseases are characterised by selective damage to specific neurons in the nervous system. Interest in such diseases in humans has resulted in considerable progress in the molecular understanding of these disorders in recent decades. Numerous neurodegenerative diseases have also been described in domestic animals but relatively little molecular work has been reported. In the present review, we have classified neurodegenerative disease according to neuroanatomical criteria. We have established two large groups, based on whether the neuronal cell body or its axon was primarily affected. Conditions such as motor neuron diseases, cerebellar degenerations and neuroaxonal dystrophies are discussed in terms of their clinical and neuropathological features. In the most studied disorders, we also present what is known about underlying pathomechanisms, and compare them with their human counterparts. The purpose of this review is to re-kindle interest in this group of diseases and to encourage veterinary researchers to investigate molecular mechanisms by taking advantage of current diagnostic tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The canine distemper virus (CDV) belongs to the Morbillivirus genus which includes important human pathogens like the closely related measles virus. CDV infection can reach the nervous system where it causes serious malfunctions. Although this pathology is well described, the molecular events in brain infection are still poorly understood. Here we studied infection in vitro by CDV using a model of dissociated cell cultures from newborn rat hippocampus. We used a recombinant CDV closely related to the neurovirulent A75/17 which also expresses the enhanced green fluorescent protein. We found that infected neurons and astrocytes could be clearly detected, and that infection spreads only slowly to neighboring cells. Interestingly, this infection causes a massive cell death of neurons, which includes also non-infected neurons. Antagonists of NMDA-type or alpha-amino-3-hydroxy-5-methylisoxazole-4-propinate (AMPA)-type glutamate receptors could slow down this neuron loss, indicating an involvement of the glutamatergic system in the induction of cell death in infected and non-infected cells. Finally, we show that, following CDV infection, there is a steady increase in extracellular glutamate in infected cultures. These results indicate that CDV infection induces excitotoxic insults on neurons via glutamatergic signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution functional imaging of neural activity in vivo relies on appropriate labeling methods. In this issue of Neuron, Nagayama et al. introduce a simple procedure for staining subsets of neurons with organic calcium indicator dyes via local electroporation. Neuronal populations are sparsely labeled, preserving the ability to resolve calcium signals in dendrites and synaptic structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation. RESULTS: LIF-treatment led to a dose-dependent increase of the number of neurons and glial cells in cultures of sphere-derived cells. Based on the detection of developmental and progenitor cell markers that are maintained in LIF-treated cultures and the increase of cycling nestin-positive progenitors, we propose that LIF maintains a pool of neural progenitor cells. We further provide evidence that LIF increases the number of nestin-positive progenitor cells directly in a cell cycle-independent fashion, which we interpret as an acceleration of neurogenesis in sphere-derived progenitors. This effect is further enhanced by an anti-apoptotic action of LIF. Finally, LIF and the neurotrophins BDNF and NT3 additively promote survival of stem cell-derived neurons. CONCLUSION: Our results implicate LIF as a powerful tool to control neural differentiation and maintenance of stem cell-derived murine spiral ganglion neuron precursors. This finding could be relevant in cell replacement studies with animal models featuring spiral ganglion neuron degeneration. The additive effect of the combination of LIF and BDNF/NT3 on stem cell-derived neuronal survival is similar to their effect on primary spiral ganglion neurons, which puts forward spiral ganglion-derived neurospheres as an in vitro model system to study aspects of auditory neuron development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensorineural hearing loss (SNHL) is the most common sequel of bacterial meningitis (BM) and is observed in up to 30% of survivors when the disease is caused by Streptococcus pneumoniae. BM is the single most important origin of acquired SNHL in childhood. Anti-inflammatory dexamethasone holds promises as potential adjuvant therapy to prevent SNHL associated with BM. However, in infant rats, pneumococcal meningitis (PM) increased auditory brainstem response (ABR) thresholds [mean difference = 54 decibels sound pressure level (dB SPL)], measured 3 wk after infection, irrespective to treatment with ceftriaxone plus dexamethasone or ceftriaxone plus saline (p < 0.005 compared with mock-infected controls). Moreover, dexamethasone did not attenuate short- and long-term histomorphologic correlates of SNHL. At 24 h after infection, blood-labyrinth barrier (BLB) permeability was significantly increased in infected animals of both treatment groups compared with controls. Three weeks after the infection, the averaged number of type I neurons per square millimeter of the Rosenthal's canal dropped from 0.3019 +/- 0.0252 in controls to 0.2227 +/- 0.0635 in infected animals receiving saline (p < 0.0005). Dexamethasone was not more effective than saline in preventing neuron loss (0.2462 +/- 0.0399; p > 0.05). These results suggest that more efficient adjuvant therapies are needed to prevent SNHL associated with pediatric PM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance (i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-stateengine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel consumptions in certain mission phases. Excel macrocode, Visual Basic for Application, and Excel neuron cells are combined to facilitate Excel software to perform these cycle analyses. These user-friendly programs compute and plot the data sequentially without forcing users to open other types of post-processing programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuromorphic computing has become an emerging field in wide range of applications. Its challenge lies in developing a brain-inspired architecture that can emulate human brain and can work for real time applications. In this report a flexible neural architecture is presented which consists of 128 X 128 SRAM crossbar memory and 128 spiking neurons. For Neuron, digital integrate and fire model is used. All components are designed in 45nm technology node. The core can be configured for certain Neuron parameters, Axon types and synapses states and are fully digitally implemented. Learning for this architecture is done offline. To train this circuit a well-known algorithm Restricted Boltzmann Machine (RBM) is used and linear classifiers are trained at the output of RBM. Finally, circuit was tested for handwritten digit recognition application. Future prospects for this architecture are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial neural networks are based on computational units that resemble basic information processing properties of biological neurons in an abstract and simplified manner. Generally, these formal neurons model an input-output behaviour as it is also often used to characterize biological neurons. The neuron is treated as a black box; spatial extension and temporal dynamics present in biological neurons are most often neglected. Even though artificial neurons are simplified, they can show a variety of input-output relations, depending on the transfer functions they apply. This unit on transfer functions provides an overview of different transfer functions and offers a simulation that visualizes the input-output behaviour of an artificial neuron depending on the specific combination of transfer functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the laboratory of Dr. Dieter Jaeger at Emory University, we use computer simulations to study how the biophysical properties of neurons—including their three-dimensional structure, passive membrane resistance and capacitance, and active membrane conductances generated by ion channels—affect the way that the neurons transfer synaptic inputs into the action potential streams that represent their output. Because our ultimate goal is to understand how neurons process and relay information in a living animal, we try to make our computer simulations as realistic as possible. As such, the computer models reflect the detailed morphology and all of the ion channels known to exist in the particular neuron types being simulated, and the model neurons are tested with synaptic input patterns that are intended to approximate the inputs that real neurons receive in vivo. The purpose of this workshop tutorial was to explain what we mean by ‘in vivo-like’ synaptic input patterns, and how we introduce these input patterns into our computer simulations using the freely available GENESIS software package (http://www.genesis-sim.org/GENESIS). The presentation was divided into four sections: first, an explanation of what we are talking about when we refer to in vivo-like synaptic input patterns