594 resultados para nanoscience
Resumo:
Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.
Resumo:
We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
High purity Mg-Al type alloys have a naturally fine grain size compared to commercial purity alloys with the same basic composition. This is referred to as native grain refinement. It is shown that native grain refinement occurs only in magnesium alloys containing aluminium. The mechanism is attributed to the Al4C3 particles existing in these alloys. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Detailed microscopic examination using optical and electron microscopes suggests that Al4C3, often observed in the central regions of magnesium grains on polished sections, is a potent substrate for primary Mg. Calculations of the crystallographic relationships between magnesium and Al4C3 further support the experimental observations. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The age hardening response of a sintered Al-3.8 wt% Cu-1.0 wt% Mg-0.70 wt% Si alloy with and without 0.1 wt% Sn was investigated. The sequence of precipitation was characterised using transmission electron microscopy. The ageing response of the sintered Al-Cu-Mg-Si-(Sn) alloy is similar to that of cognate wrought 2xxx series alloys. Peak hardness was associated with a fine, uniform dispersion of lath shaped precipitates, believed to be either the betaor Q phase, oriented along < 010 >. directions and theta' plates lying on {001}(alpha). planes. Natural ageing also resulted in comparable behaviour to that observed in wrought alloys. Porosity in the powder metallurgy alloys did not significantly affect the kinetics of precipitation during artificial ageing. Trace levels of tin, used to aid sintering, slightly reduced the hardening response of the alloy. However, this was compensated for by significant improvements in density and hardness. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
PbS nanocrystals were synthesized directly in the conducting polymer, poly (3 -hexylthiophene-2,5-diyl). Transmission electron microscopy shows that the PbS nanocrystals are faceted and relatively uniform in size with a mean size of 10 nm. FFT analysis of the atomic lattice planes observed in TEM and selected area electron diffraction confirm that the nanocrystals have the PbS rock salt structure. The synthesis conditions are explored to show control over the aggregation of PbS nanocrystals in the thiophene conducting polymer.
Resumo:
The as-cast three-dimensional morphologies of alpha-Al-15(Fe,Mn)(3)Si-2 and beta-Al5FeSi intermetallics were investigated by serial sectioning. Large beta-Al5FeSi intermetallics were observed to grow around pre-existing dendrite arms. The alpha-Al-15(Fe,Mn)(3)Si-2 intermetallic particle was observed to have a central polyhedral particle and an external highly convoluted three-dimensional structure. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The edge-to-edge matching model has been further developed along with the Cu/Cr system as an example. The conditions for zigzag atom rows to be matching directions are included and the critical value of interatomic spacing misfit along matching directions and the critical value of d-value mismatch between matching planes are proposed in the new version of the model. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ligand-gated ion channels (LGICs) are fast-responding channels in which the receptor, which binds the activating molecule (the ligand), and the ion channel are part of the same nanomolecular protein complex. This paper will describe the properties and functions of the nicotinic acetylcholine LGIC superfamily, which plays a critical role in the fast chemical transmission of electrical signals between nerve cells and between nerve and muscle cells. The superfamily will mainly be exemplified by the excitatory nicotinic acetylcholine receptor (nAChR) and the inhibitory glycine receptor (GlyR) channels.
Resumo:
An approach to the qualitative analysis of quenched microstructures in three dimensions is presented and demonstrated on unmodified and Sr-modified Al-10% Si samples. The samples were repeatedly polished to obtain a series of digital images through the depth of the microstructure. A three-dimensional reconstruction of the microstructure was obtained by assembling the images of the serial sections. Reconstructions were made of unmodified and Sr-modified Al-Si eutectic grains that were quenched during eutectic solidification. The three-dimensional reconstructions show that strontium modification changes the size and morphology of the Al-Si eutectic grains. Sr-modified eutectic grains are large approximately spherical grains and grow with a high interface velocity. In the unmodified alloy, many small eutectic grains grow from the dendrite arm tips. The unmodified eutectic grains appear to grow from the dendrite tips into the undercooled liquid, rather than back-filling the dendrite envelope, possibly continuing to grow in the same manner as the equiaxed dendrites. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Cu-based bulk metallic glass matrix composites (BMGMCs) containing in-situ TiC particles were fabricated successfully. The yield and fracture strength increased from 1930 MPa, 2250 MPa to 2210 MPa, 2500 MPa, respectively. The ductility was improved and the hardness was also enhanced by 25%. The fracture mechanism was investigated in detail. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Three apparently distinct and different approaches have been proposed to account for the crystallographic features of diffusion-controlled precipitation. These three models are based on (a) an invariant line in the habit plane, (b) the parallelism of a pair of Deltags that are perpendicular to the habit plane and (c) the parallelism of a pair of Moire fringes that are in turn parallel to the habit plane. The purpose of the present paper is to show that these approaches are in fact absolutely equivalent and that when certain conditions are satisfied they are essentially the same as the recent edge-to-edge matching model put forward by the authors. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L-1 diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.