973 resultados para mutualism disruption


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intestine samples of Bufo sp. tadpoles with parasitism confirmed for Giardia agilis were studied by transmission electron microscopy. The G. agilis trophozoites were long and thin. The plasma membrane was sometimes undulated and the cytoplasm, adjacent to the dorsal and ventral regions, showed numerous vacuoles. The two nuclei presented prominent nucleoli. The cytoplasm was electron-dense with free ribosomes, glycogen and rough endoplasmic reticulum-like structures. Polyhedral inclusions were observed in the cytoplasm and outside the protozoan; some of these inclusions exhibited membrane disruption. The flagella ultrastructure is typical, with the caudal pair accompanied by the funis. Next to the anterior pair, osmiophilic material was noticed. The ventro-lateral flange was short and thick, supported by the marginal plates that penetrated into its distal extremity; only its distal portion had adjacent osmiophilic filament. The G. agilis trophozoites showed the general subcellular feature of the genus. However, the ventro-lateral flange ultrastructure was an intermediate type between G. muris and G. duodenalis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present paper summarizes new approaches regarding the progress done to the understanding of the interaction of Trypanosoma cruzi-cardiomyocytes. Mannose receptors localized at the surface of heart muscle cell are involved in binding and uptake of the parasite. One of the most striking events in the parasite-heart muscle cells interaction is the disruption of the actin cytoskeleton. We have investigated the regulation of the actin mRNA during the cytopathology induced in myocardial cells by the parasite. T. cruzi invasion increases calcium resting levels in cardiomyocytes. We have previously shown that Ca2+ ATPase of the sarcoplasmic reticulum (SERCA) is involved in the invasion of T. cruzi in cardiomyocytes. Treating the cells with thapsigargin, a drug that binds to all SERCA ATPases and causes depletion of intracellular calcium stores, we found a 75% inhibition in the T. cruzi-cardiomyocytes invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia. METHODS: Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor. RESULTS: PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death. CONCLUSIONS: In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of T-tubules (TT), sarcolemmal invaginations of cardiomyocytes (CMs), was recently identified as a general heart failure (HF) hallmark. However, whether TT per se or the overall sarcolemma is altered during HF process is still unknown. In this study, we directly examined sarcolemmal surface topography and physical properties using Atomic Force Microscopy (AFM) in living CMs from healthy and failing mice hearts. We confirmed the presence of highly organized crests and hollows along myofilaments in isolated healthy CMs. Sarcolemma topography was tightly correlated with elasticity, with crests stiffer than hollows and related to the presence of few packed subsarcolemmal mitochondria (SSM) as evidenced by electron microscopy. Three days after myocardial infarction (MI), CMs already exhibit an overall sarcolemma disorganization with general loss of crests topography thus becoming smooth and correlating with a decreased elasticity while interfibrillar mitochondria (IFM), myofilaments alignment and TT network were unaltered. End-stage post-ischemic condition (15days post-MI) exacerbates overall sarcolemma disorganization with, in addition to general loss of crest/hollow periodicity, a significant increase of cell surface stiffness. Strikingly, electron microscopy revealed the total depletion of SSM while some IFM heaps could be visualized beneath the membrane. Accordingly, mitochondrial Ca(2+) studies showed a heterogeneous pattern between SSM and IFM in healthy CMs which disappeared in HF. In vitro, formamide-induced sarcolemmal stress on healthy CMs phenocopied post-ischemic kinetics abnormalities and revealed initial SSM death and crest/hollow disorganization followed by IFM later disarray which moved toward the cell surface and structured heaps correlating with TT loss. This study demonstrates that the loss of crest/hollow organization of CM surface in HF occurs early and precedes disruption of the TT network. It also highlights a general stiffness increased of the CM surface most likely related to atypical IFM heaps while SSM died during HF process. Overall, these results indicate that initial sarcolemmal stress leading to SSM death could underlie subsequent TT disarray and HF setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Human systemic antibody responses to commensal microbiota are not well characterised during health and disease. Of particular interest is the analysis of their potential modulation caused by chronic HIV-1 infection which is associated with sustained enteropathy and systemic B cell disturbances reflected by impaired B cell responses and chronic B cell hyperactivity. The mechanisms underlying B cell hyperactivation and the specificities of the resulting hypergammaglobulinaemia are only poorly understood. METHODS: By a technique referred to as live bacterial FACS (fluorescence-activated cell sorting), the present study investigated systemic antibody responses to several gut and skin commensal bacteria as well as Candida albicans in longitudinal plasma and serum samples from healthy donors, chronic HIV-1-infected individuals with or without diarrhoea and patients with inflammatory bowel disease (IBD). RESULTS: The data show that systemic antibody responses to the commensal microbiota were abundantly present in humans and remained remarkably stable over years. Overall systemic antibody responses to gut commensal bacteria were not affected during chronic HIV-1 infection, with titres decreasing when normalised to elevated plasma immunoglobulin G (IgG) levels found in patients with HIV. In contrast, increases in the titres of high affinity antimicrobiota antibodies were detected in patients with IBD, demonstrating that conditions with known increased intestinal permeability and aberrant mutualism can induce changes in antibody titres observed in these assays. CONCLUSION: Neither HIV-associated enteropathy nor B cell dysfunction impact on the high-affinity systemic antibody responses to gut commensal bacteria. HIV-associated hypergammaglobulinaemia is therefore unlikely to be driven by induction of antimicrobiota antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasite-host-environment system is dynamic, with several points of equilibrium. This makes it difficult to trace the thresholds between benefit and damage, and therefore, the definitions of commensalism, mutualism, and symbiosis become worthless. Therefore, the same concept of parasitism may encompass commensalism, mutualism, and symbiosis. Parasitism is essential for life. Life emerged as a consequence of parasitism at the molecular level, and intracellular parasitism created evolutive events that allowed species to diversify. An ecological and evolutive approach to the study of parasitism is presented here. Studies of the origin and evolution of parasitism have new perspectives with the development of molecular paleoparasitology, by which ancient parasite and host genomes can be recovered from disappeared populations. Molecular paleoparasitology points to host-parasite co-evolutive mechanisms of evolution traceable through genome retrospective studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidneys are the main regulator of salt homeostasis and blood pressure. In the distal region of the tubule active Na-transport is finely tuned. This transport is regulated by various hormonal pathways including aldosterone that regulates the reabsorption at the level of the ASDN, comprising the late DCT, the CNT and the CCD. In the ASDN, the amiloride-sensitive epithelial Na-channel (ENaC) plays a major role in Na-homeostasis, as evidenced by gain-of function mutations in the genes encoding ENaC, causing Liddle's syndrome, a severe form of salt-sensitive hypertension. In this disease, regulation of ENaC is compromised due to mutations that delete or mutate a PY-motif in ENaC. Such mutations interfere with Nedd4-2- dependent ubiquitylation of ENaC, leading to reduced endocytosis of the channel, and consequently to increased channel activity at the cell surface. After endocytosis ENaC is targeted to the lysosome and rapidly degraded. Similarly to other ubiquitylated and endocytosed plasma membrane proteins (such as the EGFR), it is likely that the multi-protein complex system ESCRT is involved. To investigate the involvement of this system we tested the role of one of the ESCRT proteins, Tsg101. Here we show that Tsg101 interacts endogenously and in transfected HEK-293 cells with all three ENaC sub-units. Furthermore, mutations of cytoplasmic lysines of ENaC subunits lead to the disruption of this interaction, indicating a potential involvement of ubiquitin in Tsg101 / ENaC interaction. Tsg101 knockdown in renal epithelial cells increases the total and cell surface pool of ENaC, thus implying TsglOl and consequently the ESCRT system in ENaC degradation by the endosomal/lysosomal system. - Les reins sont les principaux organes responsables de la régulation de la pression artérielle ainsi que de la balance saline du corps. Dans la région distale du tubule, le transport actif de sodium est finement régulé. Ce transport est contrôlé par plusieurs hormones comme l'aldostérone, qui régule la réabsorption au niveau de l'ASDN, segment comprenant la fin du DCT, le CNT et le CCD. Dans l'ASDN, le canal à sodium épithélial sensible à l'amiloride (ENaC) joue un rôle majeur dans l'homéostasie sodique, comme cela fut démontré par les mutations « gain de fonction » dans les gênes encodant ENaC, causant ainsi le syndrome de Liddle, une forme sévère d'hypertension sensible au sel. Dans cette maladie, la régulation d'ENaC est compromise du fait des mutations qui supprime ou mute le domaine PY présent sur les sous-unités d'ENaC. Ces mutations préviennent l'ubiquitylation d'ENaC par Nedd4-2, conduisant ainsi à une baisse de l'endocytose du canal et par conséquent une activité accrue d'ENaC à la surface membranaire. Après endocytose, ENaC est envoyé vers le lysosome et rapidement dégradé. Comme d'autres protéines membranaires ubiquitylées et endocytées (comme l'EGFR), il est probable que le complexe multi-protéique ESCRT est impliqué dans le transport d'ENaC au lysosome. Pour étudier l'implication du système d'ESCRT dans la régulation d'ENaC nous avons testé le rôle d'une protéine de ces complexes, TsglOl. Notre étude nous a permis de démontrer que TsglOl se lie aux trois sous-unités ENaC aussi bien en co-transfection dans des cellules HEK-293 que de manière endogène. De plus, nous avons pu démontrer l'importance de l'ubiquitine dans cette interaction par la mutation de toutes les lysines placées du côté cytoplasmique des sous-unités d'ENaC, empêchant ainsi l'ubiquitylation de ces sous-unités. Enfin, le « knockdown » de TsglOl dans des cellules épithéliales de rein induit une augmentation de l'expression d'ENaC aussi bien dans le «pool» total qu'à la surface membranaire, indiquant ainsi un rôle pour TsglOl et par conséquent du système d'ESCRT dans la dégradation d'ENaC par la voie endosome / lysosome. - Le corps humain est composé d'organes chacun spécialisé dans une fonction précise. Chaque organe est composé de cellules, qui assurent la fonction de l'organe en question. Ces cellules se caractérisent par : - une membrane qui leur permet d'isoler leur compartiment interne (milieu intracellulaire ou cytoplasme) du liquide externe (milieu extracellulaire), - un noyau, où l'ADN est situé, - des protéines, sortent d'unités fonctionnelles ayant une fonction bien définie dans la cellule. La séparation entre l'extérieure et l'intérieure de la cellule est essentielle pour le maintien des composants de ces milieux ainsi que pour la bonne fonction de l'organisme et des cellules. Parmi ces composants, le sodium joue un rôle essentiel car il conditionne le maintien de volume sanguin en participant au maintien du volume extracellulaire. Une augmentation du sodium dans l'organisme provoque donc une augmentation du volume sanguin et ainsi provoque une hypertension. De ce fait, le contrôle de la quantité de sodium présente dans l'organisme est essentiel pour le bon fonctionnement de l'organisme. Le sodium est apporté par l'alimentation, et c'est au niveau du rein que va s'effectuer le contrôle de la quantité de sodium qui va être retenue dans l'organisme pour le maintien d'une concentration normale de sodium dans le milieu extracellulaire. Le rein va se charger de réabsorber toutes sortes de solutés nécessaires pour l'organisme avant d'évacuer les déchets ou le surplus de ces solutés en produisant l'urine. Le rein va se charger de réabsorber le sodium grâce à différentes protéines, parmi elle, nous nous sommes intéressés à une protéine appelée ENaC. Cette protéine joue un rôle important dans la réabsorption du sodium, et lorsqu'elle fonctionne mal, comme il a pu être observé dans certaines maladies génétiques, il en résulte des problèmes d'hypo- ou d'hypertension. Les problèmes résultant du mauvais fonctionnement de cette protéine obligent donc la cellule à réguler efficacement ENaC par différents mécanismes, notamment en diminuant son expression et en dégradant le « surplus ». Dans cette travail de thèse, nous nous sommes intéressés au mécanisme impliqué dans la dégradation d'ENaC et plus précisément à un ensemble de protéines, appelé ESCRT, qui va se charger « d'escorter » une protéine vers un sous compartiment à l'intérieur de la cellule ou elle sera dégradée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B lymphocytes are considered to play a minimal role in host defense against Leishmania major. In this study, the contribution of B cells to susceptibility to infection with different strains of L. major was investigated in BALB/c mice lacking mature B cells due to the disruption of the IgM transmembrane domain (microMT). Whereas BALB/c microMT remained susceptible to infection with L. major IR173 and IR75, they were partially resistant to infection with L. major LV39. Adoptive transfer of naive B cells into BALB/c microMT mice before infection restored susceptibility to infection with L. major LV39, demonstrating a role for B cells in susceptibility to infection with this parasite. In contrast, adoptive transfer of B cells that express an IgM/IgD specific for hen egg lysozyme (HEL), an irrelevant Ag, did not restore disease progression in BALB/c microMT mice infected with L. major LV39. This finding was likely due to the inability of HEL Tg B cells to internalize and present Leishmania Ags to specific T cells. Furthermore, specific Ig did not contribute to disease progression as assessed by transfer of immune serum in BALB/c microMT mice. These data suggest that direct Ag presentation by specific B cells and not Ig effector functions is involved in susceptibility of BALB/c mice to infection with L. major LV39.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimWe take a comparative phylogeographical approach to assess whether three species involved in a specialized oil-rewarding pollination system (i.e. Lysimachia vulgaris and two oil-collecting bees within the genus Macropis) show congruent phylogeographical trajectories during post-glacial colonization processes. Our working hypothesis is that within specialized mutualistic interactions, where each species relies on the co-occurrence of the other for survival and/or reproduction, partners are expected to show congruent evolutionary trajectories, because they are likely to have followed parallel migration routes and to have shared glacial refugia. LocationWestern Palaearctic. MethodsOur analysis relies on the extensive sampling of 104 Western Palaearctic populations (totalling 434, 159 and 74 specimens of Lysimachiavulgaris, Macropiseuropaea and Macropisfulvipes, respectively), genotyped with amplified fragment length polymorphism. Based on this, we evaluated the regional genetic diversity (Shannon diversity and allele rarity index) and genetic structure (assessed using structure, population networks, isolation-by-distance and spatial autocorrelation metrics) of each species. Finally, we compared the general phylogeographical patterns obtained. ResultsContrary to our expectations, the analyses revealed phylogeographical signals suggesting that the investigated organisms demonstrate independent post-glacial trajectories as well as distinct contemporaneous demographic parameters, despite their mutualistic interaction. Main conclusionsThe mutualistic partners investigated here are likely to be experiencing distinct and independent evolutionary dynamics because of their contrasting life-history traits (e.g. dispersal abilities), as well as distinct hubs and migration routes. Such conditions would prevent and/or erase any signature of co-structuring of lineages in space and time. As a result, the lack of phylogeographical congruence driven by differences in life-history traits might have arisen irrespective of the three species having shared similar Pleistocene glacial refugia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-­‐caldesmon and <-­‐smooth muscle actin (〈-­‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-­‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-­‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-­‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-­‐SMA, vimentin, h-­‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-­‐MHC), tropomyosin-­‐4, retinol binding protein-­‐1 (RBP-­‐1), nonmuscle-­‐myosin heavy chain-­‐B (NM-­‐MHC-­‐B), Von Willebrand factor (VWF). A semi-­‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-­‐SMA, Calponin, SM-­‐MHC, NM-­‐MHC-­‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-­‐SMA was mostly expressed in control arteries, whereas NM-­‐MHC-­‐B in the pathologic ones. Using SM-­‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-­‐ SMA was more expressed in the pathological samples, while NM-­‐MHC-­‐B in the control group; SM-­‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-­‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-­‐SMA, calponin and SM-­‐MHC in the arteries with stenosis, while NM-­‐MHC-­‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.