914 resultados para muscle resection
Resumo:
To gain further insights into the role of T lymphocytes in immune responses against bladder tumors, we developed a method that monitors the presence of functional antigen-specific T cells in the urine of non-muscle invasive bladder cancer patients. As relatively few immune cells can usually be recovered from urine, we examined different isolation/amplification protocols and took advantage of patients treated with weekly intravesical instillations of Bacillus Calmette-Guérin, resulting in large amounts of immune cells into urine. Our findings demonstrate that, upon in vitro amplification, antigen-specific T cells can be detected by an interferon γ (IFNγ)-specific ELISPOT assay.
Resumo:
Management of musculoskeletal tumours usually begins with the appearance of a lump or bump, or the onset of unspecific symptoms. A poor initial work-up, a faulty biopsy or an inadequate resection may have a severe impact on the prognosis, including re-interventions, amputation, local recurrence or systemic spread of the disease. The patient with a suspicious lesion should be referred to a "sarcoma centers" where a planned and well-performed diagnostic work-up will allow a precise diagnosis in terms of histology and staging. After a multidisciplinary discussion of the case, an accurate treatment plan is established. Such an approach allows an adequate patient management, often with a positive impact on the survival and functional outcome.
Resumo:
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Resumo:
Denervated muscle tissue undergoes morphologic changes that result in atrophy. The amount of muscle atrophy after denervation following free muscle transfer has not been measured so far. Therefore, the amount of muscle atrophy in human free muscle transfer for lower extremity reconstruction was measured in a series of 10 patients. Three-dimensional laser surface scanning was used to measure flap volume changes 2 weeks as well as 6 and 12 months after the operation. None of the muscles transferred was re-innervated.All muscles healed uneventfully without signs of compromised perfusion resulting in partial flap loss. The muscle volume decreased to 30 ± 4% and 19 ± 4% 6 and 12 months, respectively, after the operation, ie, the volume decreased by approximately 80% within a 12-month period.Denervated free muscle flap tissue undergoes massive atrophy of approximately 80%, mostly within the first 6 months.
Resumo:
The legal Pantanal caiman (Caiman crocodilus yacare) farming, in Brazil, has been stimulated and among meat preservation techniques the salting process is a relatively simple and low-cost method. The objective of this work was to study the sodium chloride diffusion kinetics in farmed caiman muscle during salting. Limited volumes of brine were employed, with salting essays carried at 3, 4 and 5 brine/muscle ratios, at 15%, 20% and 25% w/w brine concentrations, and brine temperatures of 10, 15 and 20ºC. The analytical solution of second Fick's law considering one-dimensional diffusion through an infinite slab in contact with a well-stirred solution of limited volume was used to calculate effective salt diffusion coefficients and to predict the sodium chloride content in the fillets. A good agreement was obtained between the considered analytical model and experimental data. Salt diffusivities in fillets were found to be in the range of 0.47x10-10 to 9.62x10-10 m²/s.
Resumo:
Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
Background: Our goal was to determine whether short-term intermittent hypoxia exposure, at a level well tolerated by healthy humans and previously shown by our group to increase EPO and erythropoiesis, could mobilizehematopoietic stem cells (HSC) and increase their presence in peripheral circulation. Methods: Four healthy male subjects were subjected to three different protocols: one with only a hypoxic stimulus (OH), another with a hypoxic stimulus plus muscle electrostimulation (HME) and the third with only muscle electrostimulation (OME). Intermittent hypobaric hypoxia exposureconsisted of only three sessions of three hours at barometric pressure 540 hPa (equivalent to an altitude of 5000 m) for three consecutive days, whereas muscular electrostimulation was performed in two separate periods of 25 min in each session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment and 24 h, 48 h, 4 days and 7 days after the last day of hypoxic exposure. Results: There was a clear increase in the number of circulating CD34+ cells after combined hypobaric hypoxia and muscular electrostimulation. This response was not observed after the isolated application of the same stimuli. Conclusion: Our results open a new application field for hypobaric systems as a way to increase efficiency in peripheral HSC collection.
Resumo:
PURPOSE: Intraoperative adverse events significantly influence morbidity and mortality of laparoscopic colorectal resections. Over an 11-year period, the changes of occurrence of such intraoperative adverse events were assessed in this study. METHODS: Analysis of 3,928 patients undergoing elective laparoscopic colorectal resection based on the prospective database of the Swiss Association of Laparoscopic and Thoracoscopic Surgery was performed. RESULTS: Overall, 377 intraoperative adverse events occurred in 329 patients (overall incidence of 8.4 %). Of 377 events, 163 (43 %) were surgical complications and 214 (57 %) were nonsurgical adverse events. Surgical complications were iatrogenic injury to solid organs (n = 63; incidence of 1.6 %), bleeding (n = 62; 1.6 %), lesion by puncture (n = 25; 0.6 %), and intraoperative anastomotic leakage (n = 13; 0.3 %). Of note, 11 % of intraoperative organ/puncture lesions requiring re-intervention were missed intraoperatively. Nonsurgical adverse events were problems with equipment (n = 127; 3.2 %), anesthetic problems (n = 30; 0.8 %), and various (n = 57; 1.5 %). Over time, the rate of intraoperative adverse events decreased, but not significantly. Bleeding complications significantly decreased (p = 0.015), and equipment problems increased (p = 0.036). However, the rate of adverse events requiring conversion significantly decreased with time (p < 0.001). Patients with an intraoperative adverse event had a significantly higher rate of postoperative local and general morbidity (41.2 and 32.9 % vs. 18.0 and 17.2 %, p < 0.001 and p < 0.001, respectively). CONCLUSIONS: Intraoperative surgical complications and adverse events in laparoscopic colorectal resections did not change significantly over time and are associated with an increased postoperative morbidity.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
A clear and rigorous definition of muscle moment-arms in the context of musculoskeletal systems modelling is presented, using classical mechanics and screw theory. The definition provides an alternative to the tendon excursion method, which can lead to incorrect moment-arms if used inappropriately due to its dependency on the choice of joint coordinates. The definition of moment-arms, and the presented construction method, apply to musculoskeletal models in which the bones are modelled as rigid bodies, the joints are modelled as ideal mechanical joints and the muscles are modelled as massless, frictionless cables wrapping over the bony protrusions, approximated using geometric surfaces. In this context, the definition is independent of any coordinate choice. It is then used to solve a muscle-force estimation problem for a simple 2D conceptual model and compared with an incorrect application of the tendon excursion method. The relative errors between the two solutions vary between 0% and 100%.
Resumo:
Aims: To analyze the current literature on combined endoscopic-laparoscopic resection of colon polyps and to compare this new approach to standard laparoscopic colonic resection for polyps not suitable for endoscopic resection. Results: Several studies demonstrated that with a combined endoscopic-laparoscopic approach, polyps were successfully resected in 82-91% with a low morbidity of 3-10% and a short hospital stay of 1-2 days. Segmental laparoscopic resection was necessary in only 9-12%, but had a conversion rate to open surgery of 15% with an average hospital stay of 6-11 days. A cancerous polyp was found in 6-13% after a combined approach, with lymph node metastasis in 6%. Recurrent polyps after a combined endoscopic-laparoscopic resection seem to be rare, but follow-up of most studies is short and incomplete. Conclusion: Combined endoscopic-laparoscopic resection of colon polyps is feasible, safe, and has a high success rate. Malignant lesions can be treated laparoscopically during the same operation, avoiding the need for a second procedure, and with good long-term oncologic outcome.
Resumo:
Skeletal muscle is considered to be a major site of energy expenditure and thus is important in regulating events affecting metabolic disorders. Over the years, both in vitro and in vivo approaches have established the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in fatty acid metabolism and energy expenditure in skeletal muscles. Pharmacological activation of PPARβ/δ by specific ligands regulates the expression of genes involved in lipid use, triglyceride hydrolysis, fatty acid oxidation, energy expenditure, and lipid efflux in muscles, in turn resulting in decreased body fat mass and enhanced insulin sensitivity. Both the lipid-lowering and the anti-diabetic effects exerted by the induction of PPARβ/δ result in the amelioration of symptoms of metabolic disorders. This review summarizes the action of PPARβ/δ activation in energy metabolism in skeletal muscles and also highlights the unexplored pathways in which it might have potential effects in the context of muscular disorders. Numerous preclinical studies have identified PPARβ/δ as a probable potential target for therapeutic interventions. Although PPARβ/δ agonists have not yet reached the market, several are presently being investigated in clinical trials.