939 resultados para modular forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical study of urban air-flow for a group of five buildings that is located at the University of Reading in the United Kingdom. The airflow around these buildings has been simulated by using ANSYS CFD software package. In this study, the association between certain architectural forms: a street canyon, a semi-closure, and a courtyard-like space in a low-rise building complex, and the wind environment were investigated. The analysis of CFD results has provided detailed information on the wind patterns of these urban built forms. The numerical results have been compared with the experimental measurements within the building complex. The observed characteristics of urban wind pattern with respect to the built structures are presented as a guideline. This information is needed for the design and/or performance assessments of systems such as passive and low energy design approach, a natural or hybrid ventilation, and passive cooling. Also, the knowledge of urban wind patterns allows us to develop better design options for the application of renewable energy technologies within urban environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airflow through urban environments is one of the most important factors affecting human health, outdoor and indoor thermal comfort, air quality and the energy performance of buildings. This paper presents a study on the effects of wind induced airflows through urban built form using statistical analysis. The data employed in the analysis are from the year-long simultaneous field measurements conducted at the University of Reading campus in the United Kingdom. In this study, the association between typical architectural forms and the wind environment are investigated; such forms include: a street canyon, a semi-closure, a courtyard form and a relatively open space in a low-rise building complex. Measured data captures wind speed and wind direction at six representative locations and statistical analysis identifies key factors describing the effects of built form on the resulting airflows. Factor analysis of the measured data identified meteorological and architectural layout factors as key factors. The derivation of these factors and their variation with the studied built forms are presented in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring the retention, or residence time, of dosage forms to biological tissue is commonly a qualitative measurement, where no real values to describe the retention can be recorded. The result of this is an assessment that is dependent upon a user's interpretation of visual observation. This research paper outlines the development of a methodology to quantitatively measure, both by image analysis and by spectrophotometric techniques, the retention of material to biological tissues, using the retention of polymer solutions to ocular tissue as an example. Both methods have been shown to be repeatable, with the spectrophotometric measurement generating data reliably and quickly for further analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spiking neural networks are usually limited in their applications due to their complex mathematical models and the lack of intuitive learning algorithms. In this paper, a simpler, novel neural network derived from a leaky integrate and fire neuron model, the ‘cavalcade’ neuron, is presented. A simulation for the neural network has been developed and two basic learning algorithms implemented within the environment. These algorithms successfully learn some basic temporal and instantaneous problems. Inspiration for neural network structures from these experiments are then taken and applied to process sensor information so as to successfully control a mobile robot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Distributed Rule Induction (DRI) project at the University of Portsmouth is concerned with distributed data mining algorithms for automatically generating rules of all kinds. In this paper we present a system architecture and its implementation for inducing modular classification rules in parallel in a local area network using a distributed blackboard system. We present initial results of a prototype implementation based on the Prism algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of classification rules is one of the most important technologies in data mining. Most of the work in this field has concentrated on the Top Down Induction of Decision Trees (TDIDT) approach. However, alternative approaches have been developed such as the Prism algorithm for inducing modular rules. Prism often produces qualitatively better rules than TDIDT but suffers from higher computational requirements. We investigate approaches that have been developed to minimize the computational requirements of TDIDT, in order to find analogous approaches that could reduce the computational requirements of Prism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inducing rules from very large datasets is one of the most challenging areas in data mining. Several approaches exist to scaling up classification rule induction to large datasets, namely data reduction and the parallelisation of classification rule induction algorithms. In the area of parallelisation of classification rule induction algorithms most of the work has been concentrated on the Top Down Induction of Decision Trees (TDIDT), also known as the ‘divide and conquer’ approach. However powerful alternative algorithms exist that induce modular rules. Most of these alternative algorithms follow the ‘separate and conquer’ approach of inducing rules, but very little work has been done to make the ‘separate and conquer’ approach scale better on large training data. This paper examines the potential of the recently developed blackboard based J-PMCRI methodology for parallelising modular classification rule induction algorithms that follow the ‘separate and conquer’ approach. A concrete implementation of the methodology is evaluated empirically on very large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Prism family of algorithms induces modular classification rules which, in contrast to decision tree induction algorithms, do not necessarily fit together into a decision tree structure. Classifiers induced by Prism algorithms achieve a comparable accuracy compared with decision trees and in some cases even outperform decision trees. Both kinds of algorithms tend to overfit on large and noisy datasets and this has led to the development of pruning methods. Pruning methods use various metrics to truncate decision trees or to eliminate whole rules or single rule terms from a Prism rule set. For decision trees many pre-pruning and postpruning methods exist, however for Prism algorithms only one pre-pruning method has been developed, J-pruning. Recent work with Prism algorithms examined J-pruning in the context of very large datasets and found that the current method does not use its full potential. This paper revisits the J-pruning method for the Prism family of algorithms and develops a new pruning method Jmax-pruning, discusses it in theoretical terms and evaluates it empirically.