529 resultados para microvascular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le compartiment microvasculaire est une cible importante du stress oxydant qui est un facteur majeur de la dysfonction endothéliale, notamment au cours d’exposition aux rayonnements ionisants. L’altération de l’endothélium induite par le stress oxydant est impliquée dans la toxicité radio-induite des tissus sains. Limiter les dysfonctions endothéliales est donc un enjeu important des traitements radiothérapeutiques actuels. Cet objectif nécessite une meilleure caractérisation de la signalisation du stress oxydant dans les cellules endothéliales. La voie p38 MAPK est incontournable dans la réponse au stress oxydant mais reste encore insuffisamment caractérisée. Par une approche protéomique, nous avons identifié la nucléophosmine (NPM) comme nouveau partenaire de p38 dans le cytoplasme des cellules endothéliales. La phosphatase PP2a est aussi associée à ce complexe NPM/p38. Nos travaux montrent que le stress oxydant (H2O2, 500μM) régule la déphosphorylation de NPM via PP2a, entraine sa dissociation rapide du complexe et favorise sa translocation vers le noyau. De plus, nous montrons que la présence de NPM déphosphorylée au noyau altère la réponse des cellules aux dommages à l’ADN induits par le stress oxydant. Le céramide sphingolipide membranaire est également un facteur important des voies de stress, particulièrement dans les cellules endothéliales. Notre étude aborde donc l’implication de ce sphingolipide dans la régulation de la voie NPM/p38. Une meilleure caractérisation de la voie p38 et de ses acteurs permettra d’identifier de potentielles cibles afin de limiter les dysfonctions endothéliales et leurs conséquences délétères sur les tissus environnants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the dynamics of blood cells is a crucial element to discover biological mechanisms, to develop new efficient drugs, design sophisticated microfluidic devices, for diagnostics. In this work, we focus on the dynamics of red blood cells in microvascular flow. Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. We investigate the development of blood flow and its resistance starting from a dispersed configuration of red blood cells in simulations for different hematocrits, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow, which allows an estimation of the length of a vessel required for full flow development, $l_c \approx 25D$, with vessel diameter $D$. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length $l_c$. The presence of aggregation interactions between red blood cells lead in general to a reduction of blood flow resistance. The development of the cell-free layer thickness looks similar for both cases with and without aggregation interactions. Although, attractive interactions result in a larger cell-free layer plateau values. However, because the aggregation forces are short-ranged at high enough shear rates ($\bar{\dot{\gamma}} \gtrsim 50~\text{s}^{-1}$) aggregation of red blood cells does not bring a significant change to the blood flow properties. Also, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness with respect to flow rate assuming steady-state flow. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells. Finally, we investigate segregation phenomena in blood as a two-component suspension under Poiseuille flow, consisting of red blood cells and target cells. The spatial distribution of particles in blood flow is very important. For example, in case of nanoparticle drug delivery, the particles need to come closer to microvessel walls, in order to adhere and bring the drug to a target position within the microvasculature. Here we consider that segregation can be described as a competition between shear-induced diffusion and the lift force that pushes every soft particle in a flow away from the wall. In order to investigate the segregation, on one hand, we have 2D DPD simulations of red blood cells and target cell of different sizes, on the other hand the Fokker-Planck equation for steady state. For the equation we measure force profile, particle distribution and diffusion constant across the channel. We compare simulation results with those from the Fokker-Planck equation and find a very good correspondence between the two approaches. Moreover, we investigate the diffusion behavior of target particles for different hematocrit values and shear rates. Our simulation results indicate that diffusion constant increases with increasing hematocrit and depends linearly on shear rate. The third part of the study describes development of a simulation model of complex vascular geometries. The development of the model is important to reproduce vascular systems of small pieces of tissues which might be gotten from MRI or microscope images. The simulation model of the complex vascular systems might be divided into three parts: modeling the geometry, developing in- and outflow boundary conditions, and simulation domain decomposition for an efficient computation. We have found that for the in- and outflow boundary conditions it is better to use the SDPD fluid than DPD one because of the density fluctuations along the channel of the latter. During the flow in a straight channel, it is difficult to control the density of the DPD fluid. However, the SDPD fluid has not that shortcoming even in more complex channels with many branches and in- and outflows because the force acting on particles is calculated also depending on the local density of the fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim. We report a case of ulnar and palmar arch artery aneurysm in a 77 years old man without history of any occupational or recreational trauma, vasculitis, infections or congenital anatomic abnormalities. We also performed a computed search of literature in PUBMED using the keywords “ulnar artery aneurysm” and “palmar arch aneurysm”. Case report. A 77 years old male patient was admitted to hospital with a pulsing mass at distal right ulnar artery and deep palmar arch; at ultrasound and CT examination a saccular aneurysm of 35 millimeters at right ulnar artery and a 15 millimeters dilatation at deep palmar arch were detected. He was asymptomatic for distal embolization and pain. In local anesthesia ulnar artery and deep palmar arch dilatations were resected. Reconstruction of vessels was performed through an end-to-end microvascular repair. Histological examination confirmed the absence of vasculitis and collagenopaties. In postoperative period there were no clinical signs of peripheral ischemia, Allen’s test and ultrasound examination were normal. At follow-up of six months, the patient was still asymptomatic with a normal Allen test, no signs of distal digital ischemia and patency of treated vessel with normal flow at duplex ultrasound. Conclusion. True spontaneous aneurysms of ulnar artery and palmar arch are rare and can be successfully treated with resection and microvascular reconstruction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal stretching during concussion alters glucose transport and reduces neuronal viability, also affecting other cells in the brain and the Blood Brain Barrier (BBB). Our hypothesis is that oxidative stress (OS) generated in neurons during concussions contributes to this outcome. To validate this, we investigated: (1) whether OS independently causes alterations in brain and BBB cells, namely human neuron-like, neuroblastoma cells (NCs), astrocyte cells (ACs) and brain microvascular endothelial cells (ECs), and (2) whether OS originated in NCs (as in concussion) is responsible for causing the subsequent alterations observed in ACs and ECs. We used H2O2 treatment to mimic OS, validated by examining the resulting reactive oxygen species, and evaluated alterations in cell morphology, expression and localization of the glucose transporter GLUT1, and the overall cell viability. Our results showed that OS, either directly affecting each cell type or originally affecting NCs, caused changes in several morphological parameters (surface area, Feret diameter, circularity, inter-cellular distance), slightly varied GLUT1 expression and lowered the overall cell viability of all NCs, ACs, and ECs. Therefore, we can conclude that oxidative stress, which is known to be generated during concussion, caused alterations in NCs, ACs, and ECs whether independently originated in each cell or when originated in the NCs and could further propagate the ACs and ECs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es importante diagnosticar tempranamente la afección renal y prevenir las alteraciones a nivel microvascular, para lo cual hemos tomado en consideración la determinación de la nicroalbuminuria, los niveles sanguíneos de fibrinógeno cuya elevación es considerada como factor de riesgo de la nefropatía. Los parámetros de control glucémico generados por la hemoglobina glicosilada y la fructosamina constituyen hasta hoy el mejor método para el control del metabolismo de los carboidratos, forman parte de nuestros objetivos, determinar sus valores. En nuestro estudio el 52 por ciento de la población estudiada presenta microalbuminuria basal positiva. El 70 por ciento de los investigados presenta un control dentro de parámetros normales, sin embargo el 52 por ciento de los pacientes con DM, a pesar de este buen control, presentan nofropatía irreversible. Del total de nefrópatas [52 por ciento], el 29 por ciento de los pacientes son del sexo femenino el 23 por ciento son del sexo masculino. Se observó que los años de evolución de la biabetes, tienen especial importancia en cuanto a la producción de la nefropatía, del 100 por cien de pacientes nefrópatas el 58 por ciento tenía entre 5 y 14 años de haber sido diagnosticado de diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introducción: la diabetes mellitus es una enfermedad crónica frecuente en pediatría. El análisis de indicadores de calidad asistencial contribuye a mejorar el proceso de asistencia. Objetivo: describir las principales características clínico epidemiológicas de los pacientes diabéticos asistidos en la Unidad de Diabetes (UD) de la Policlínica Pediátrica General de Referencia. Evaluar la calidad asistencial en base a indicadores. Método: estudio descriptivo, retrospectivo, utilizando los registros clínicos de los pacientes controlados en la UD entre el 1º de julio de 2012 y el 1º de julio de 2013. Se definieron indicadores de proceso asistencial e indicadores de resultados. Los resultados se clasificaron en: bueno ? 80%, aceptable 60% - 80% y malo < 80%. Se calcularon medianas y promedios como medida de tendencia central. Los resultados se expresaron en frecuencias absolutas y porcentajes con su respectivo intervalo de confianza de 95%. Resultados: se incluyeron 83 pacientes. La mediana de edad fue de 12 años. El 56% era de sexo masculino. Provenían del interior del país, 66%. La mediana de edad al diagnóstico fue de 6 años. La mediana de evolución de enfermedad fue de 5 años. Tres de los nueve indicadores de calidad tuvieron un resultado bueno, cinco aceptable y uno malo. La principal falla fue el valor promedio de HbA1c. Conclusiones: se encontraron indicadores de calidad aceptables. Se debe mejorar el cumplimiento de la pesquisa microvascular y en particular el control metabólico de la enfermedad. La evaluación periódica de indicadores de calidad permitirá mejorar la calidad de asistencia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Excess levels of free radicals such as nitric oxide (NO) and superoxide anion (O2-)are associated with the pathogenesis of endothelial cell dysfunction in diabetes mellitus. This study was designed to investigate the underlying causes of oxidative stress in coronary microvascular endothelial cells (CMEC) exposed to hyperglycaemia. Methods: CMEC were cultured under normal (5.5 mmol/L) or high glucose (22 mmol/L)concentrations for 7 days. The activity and expression (protein level) of eNOS, iNOS, NAD(P)H oxidase and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase and glutahione peroxidase (GPx) were investigated by specific activity assays and Western analyses,respectively while the effects of hyperglycaemia on nitrite and O2 - generation were investigated by Griess reaction and cytochrome C reduction assay, respectively. Results: Hyperglycaemia did not alter eNOS or iNOS protein expressions and overall nitrite generation, an index of NO production. However, it significantly reduced the levels of intracellular antioxidant glutathione by 50% (p<0.05) and increased the protein expressions and/or activities of p22-phox, a membrane-bound component of pro-oxidant NAD(P)H oxidase and antioxidant enzymes (p<0.05). Free radical-scavengers, namely, Tiron and MPG (0.1-1 mol/L) reduced hyperglycaemia-induced antioxidant enzyme activity and increased glutathione and nitrite generation to the levels observed in CMEC cultured in normoglycaemic medium (p<0.01). The differences in enzyme activity and expressions were independent of the increased osmolarity generated by high glucose levels as investigated by using equimolar concentrations of mannitol in parallel experiments. Conclusions: These results suggest that hyperglycaemia-induced oxidative stress may arise in CMEC as a result of enhanced prooxidant enzyme activity and diminished generation of 3 antioxidant glutathione. By increasing the antioxidant enzyme capacity CMEC may protect themselves against free radical-induced cell damage in diabetic conditions. The definitive version is available at http://www.blackwell-synergy.com

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Hyperglycaemia (HG), in stroke patients, is associated with worse neurological outcome by compromising endothelial cell function and the blood–brain barrier (BBB) integrity. We have studied the contribution of HG-mediated generation of oxidative stress to these pathologies and examined whether antioxidants as well as normalization of glucose levels following hyperglycaemic insult reverse these phenomena. Methods: Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures were used to simulate the human BBB. The integrity of the BBB was measured by transendothelial electrical resistance using STX electrodes and an EVOM resistance meter, while enzyme activities were measured by specific spectrophotometric assays. Results: After 5 days of hyperglycaemic insult, there was a significant increase in BBB permeability that was reversed by glucose normalization. Co-treatment of cells with HG and a number of antioxidants including vitamin C, free radical scavengers and antioxidant enzymes including catalase and superoxide dismutase mimetics attenuated the detrimental effects of HG. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C but not phosphoinositide 3 kinase (PI3 kinase) also reversed HG-induced BBB hyperpermeability. In HBMEC, HG enhanced pro-oxidant (NAD(P)H oxidase) enzyme activity and expression that were normalized by reverting to normoglycaemia. Conclusions: HG impairs brain microvascular endothelial function through involvements of oxidative stress and several signal transduction pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To study the prevalence of diabetic retinopathy in known diabetic patients attending the diabetes outpatient department (OPD) of Sind Government Hospital (SGH), New Karachi Township (NKT), Pakistan. Methods: A cross-sectional observational study was carried out at the diabetic OPD of SGH, NKT over the period of 17 months from March 2013 to August 2014. The selected patients were interviewed based on a questionnaire; laboratory investigations were performed and examination of the eye was conducted by a specialist ophthalmologist. One hundred and fifty four (154) subjects out of 305 patients contacted fully completed the study. Stratification of the data on gender basis was done, after which one-way ANOVA, χ2 test of correlation, binary logistic regression and relative risk analyses were carried out using SPSS-20. Results: It was found that 66 % men of normal weight (χ2 = 4.667, p < 0.05) and 60.7 % overweight women (χ2 = 5.143, p < 0.05) were more likely to present with diabetic retinopathy (DR). Prevalence of DR in this target population was 42.86 % (N = 66). Background DR (56 %) and maculopathy (23 %) were more prevalent than advanced conditions of the disease. There was no gender-based preponderance for the presentation of DR (χ2 = 0.663; p > 0.05), nor was this seen in different ethnic groups. Conclusion: DR is prevalent in the target population and, therefore, emphasis should be on the education of the local population of New Karachi Township on how to attain euglycemic state with regular medication, diet and exercise to avoid development and progress of DR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the effect of withaferin A (WFA) on the proliferation and migration of brain endothelial cells. Methods: BALB-5023 mouse microvascular cells were treated with a range of withaferin A (WFA) concentrations from 10 to 100 ng/mL. Dojindo’s CCK-8 cell proliferation kit was used for the analysis of cell proliferation. Transwell cell culture inserts were used to determine the migration potential of WFAtreated endothelial cells. Absorbance was measured at 450 nm on an enzyme-linked immunosorbent (ELISA) reader. Results: The results revealed a significant increase in the proliferation and migration of endothelial cells following treatment with a low concentration (30 ng/mL) of WFA compared with the higher concentration (> 10 ng/mL). The effect was further enhanced when WFA was used in combination with soluble Fas ligand (sFasL). Autocrine signaling of vascular endothelial growth factor (VEGF) by endothelial cells was significantly increased following treatment with WFA or in combination with sFasL. WFA increased the expression of Fas on endothelial cells, suggesting the involvement of sFasL in the proliferation and migration of brain endothelial cells. Conclusion: Thus, WFA promotes the proliferation and migration of endothelial cells through increase in the expression of Fas and secretion of VEGF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Terlipressin improves renal function in some patients with type-1 hepato-renal syndrome (HRS). Renal contrast-enhanced ultrasound (CEUS), a novel imaging modality, may help to predict terlipressin responsiveness. OBJECTIVES: We used CEUS to estimate the effect of terlipressin on the renal cortical microcirculation in type-1 HRS. METHODS: We performed renal CEUS scans with destruction-replenishment sequences using Sonovue(®) (Bracco, Milano Italy) as a contrast agent at baseline and after the intravenous administration of 1 mg of terlipressin, in four patients with type-1 HRS. We analyzed video sequences offline using dedicated software. We derived a perfusion index (PI) at each time point for each patient. RESULTS: Patients 1 and 2 had severe presentation and were admitted to the intensive care unit. Both showed a marked increase in PI (+216% and + 567% of baseline) in response to terlipressin. Patients 3 and 4 had less severe presentations and had a decrease in PI (-53% and -20% of baseline) in response to terlipressin. Patients 1, 2, and 4, but not patient 3, responded to terlipressin therapy with a decrease in serum creatinine to <150 µmol/L. CONCLUSIONS: CEUS detected changes in renal cortical microcirculation in response to terlipressin and demonstrated heterogeneous microvascular responses to terlipressin. These initial proof-of-concept findings justify future investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcirculatory vessels are lined by endothelial cells (ECs) which are surrounded by a single or multiple layer of smooth muscle cells (SMCs). Spontaneous and agonist induced spatiotemporal calcium (Ca2+) events are generated in ECs and SMCs, and regulated by complex bi-directional signaling between the two layers which ultimately determines the vessel tone. The contractile state of microcirculatory vessels is an important factor in the determination of vascular resistance, blood flow and blood pressure. This dissertation presents theoretical insights into some of the important and currently unresolved phenomena in microvascular tone regulation. Compartmental and continuum models of isolated EC and SMC, coupled EC-SMC and a multi-cellular vessel segment with deterministic and stochastic descriptions of the cellular components were developed, and the intra- and inter-cellular spatiotemporal Ca2+ mobilization was examined.^ Coupled EC-SMC model simulations captured the experimentally observed localized subcellular EC Ca2+ events arising from the opening of EC transient receptor vanilloid 4 (TRPV4) channels and inositol triphosphate receptors (IP3Rs). These localized EC Ca2+ events result in endothelium-derived hyperpolarization (EDH) and Nitric Oxide (NO) production which transmit to the adjacent SMCs to ultimately result in vasodilation. The model examined the effect of heterogeneous distribution of cellular components and channel gating kinetics in determination of the amplitude and spread of the Ca2+ events. The simulations suggested the necessity of co-localization of certain cellular components for modulation of EDH and NO responses. Isolated EC and SMC models captured intracellular Ca2+ wave like activity and predicted the necessity of non-uniform distribution of cellular components for the generation of Ca2+ waves. The simulations also suggested the role of membrane potential dynamics in regulating Ca2+ wave velocity. The multi-cellular vessel segment model examined the underlying mechanisms for the intercellular synchronization of spontaneous oscillatory Ca2+ waves in individual SMC. ^ From local subcellular events to integrated macro-scale behavior at the vessel level, the developed multi-scale models captured basic features of vascular Ca2+ signaling and provide insights for their physiological relevance. The models provide a theoretical framework for assisting investigations on the regulation of vascular tone in health and disease.^