996 resultados para microbial metabolic quotient
Resumo:
Resting skeletal muscle has a preference for the oxidation of lipids compared to carbohydrates and a shift towards carbohydrate oxidation is observed with increasing exercise. Lactate is not only an end product in skeletal muscle but also an important metabolic intermediate for mitochondrial oxidation. Recent advances in hyperpolarized MRS allow the measurement of substrate metabolism in vivo in real time. The aim of this study was to investigate the use of hyperpolarized 13C lactate as a substrate for metabolic studies in skeletal muscle in vivo. Carbohydrate metabolism in healthy rat skeletal muscle at rest was studied in different nutritional states using hyperpolarized [1-13C]lactate, a substrate that can be injected at physiological concentrations and leaves other oxidative processes undisturbed. 13C label incorporation from lactate into bicarbonate in fed animals was observed within seconds but was absent after an overnight fast, representing inhibition of the metabolic flux through pyruvate dehydrogenase (PDH). A significant decrease in 13C labeling of alanine was observed comparing the fed and fasted group, and was attributed to a change in cellular alanine concentration and not a decrease in enzymatic flux through alanine transaminase. We conclude that hyperpolarized [1-13C]lactate can be used to study carbohydrate oxidation in resting skeletal muscle at physiological levels. The herein proposed method allows probing simultaneously both PDH activity and variations in alanine tissue concentration, which are associated with metabolic dysfunctions. A simple alteration of the nutritional state demonstrated that the observed pyruvate, alanine, and bicarbonate signals are indeed sensitive markers to probe metabolic changes in vivo.
Resumo:
Oxygen consumption of collagenase-liberated rat adipocytes was measured by two different techniques: a microspectrophotometric method using hemoglobin as indicator of respiration and a technique using the oxygen electrode. These two completely different techniques gave similar values for oxygen consumption. With the spectrophotometric method, the oxygen consumption of single fat cells was determined. A close positive correlation (r = greater than 0.90) between oxygen consumption and fat cell size was observed in each tissue examined. With the oxygen electrode technique, oxygen consumption of adipocyte suspensions from young (40 days, 180 g) and old (90 days, 480 g) rats was examined. Fat cells of the suspensions were separated into classes of different size by a flotation technique. A significant positive correlation between fat cell size and oxygen consumption was observed in both young (r = 0.88) and old (r = 0.95) rats. However, the slope was much steeper in young rats. At a cell weight of 0.1 microgram the oxygen consumption was 0.364 and 0.086 microL O2/10(6) cells/min-1 in young and old rats, respectively. In the literature, a number of separate metabolic pathways have been found to be related positively to fat cell size and negatively to age. We conclude that these scattered metabolic observations are in agreement with integrated data on energy expenditure as evaluated from oxygen consumption. Estimations of the energy expenditure of adipose tissue indicates that this tissue is responsible for about 1% and 0.5% of the total energy expenditure in young and old rats, respectively.
Resumo:
Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.
Resumo:
AIM OF THE STUDY: We assessed the relation between metabolic syndrome (MetS) and its components and colorectal cancer. METHODS: We analysed data from a multicentre case-control study conducted in Italy and Switzerland, including 1378 cases of colon cancer, 878 cases of rectal cancer and 4661 controls. All cases were incident and histologically confirmed. Controls were subjects admitted to the same hospitals as cases with acute non-malignant conditions. MetS was defined according to the International Diabetes Federation criteria. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were estimated by multiple logistic regression models, including terms for major identified confounding factors for colorectal cancer. RESULTS: With reference to each component of the MetS, the ORs of colorectal cancer in men were 1.27 (95% CI, 0.95-1.69) for diabetes, 1.24 (95% CI, 1.03-1.48) for hypertension, 1.14 (95% CI, 0.93-1.40) for hypercholesterolaemia and 1.26 (95% CI, 1.08-1.48) for overweight at age 30. The corresponding ORs in women were 1.20 (95% CI, 0.82-1.75), 0.87 (95% CI, 0.71-1.06), 0.83 (95% CI, 0.66-1.03) and 1.06 (95% CI, 0.86-1.30). Colorectal cancer risk was increased in men (OR=1.86; 95% CI, 1.21-2.86), but not in women (OR=1.13; 95% CI, 0.66-1.93), with MetS. The ORs were 2.09 (95% CI, 1.38-3.18) in men and 1.15 (95% CI, 0.68-1.94) in women with > or =3 components of the MetS, as compared to no component. Results were similar for colon and rectal cancers. CONCLUSION: This study supports a direct association between MetS and both colon and rectal cancers in men, but not in women.
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) in crop is viewed as an attractive approach for the production of this family of biodegradable plastics in large quantities and at low costs. Synthesisof PHAs containing various monomers has so far been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modifies to achieve this, including the isoprenois pathway, the fatty acid biosynthetic pathway, and the fatty acid
Resumo:
The aim of the present study was to establish and compare the durations of the seminiferous epithelium cycles of the common shrew Sorex araneus, which is characterized by a high metabolic rate and multiple paternity, and the greater white-toothed shrew Crocidura russula, which is characterized by a low metabolic rate and a monogamous mating system. Twelve S. araneus males and fifteen C. russula males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determinations, we applied the classical method of estimation and linear regression as a new method. With regard to variance, and even with a relatively small sample size, the new method seems to be more precise. In addition, the regression method allows the inference of information for every animal tested, enabling comparisons of different factors with cycle lengths. Our results show that not only increased testis size leads to increased sperm production, but it also reduces the duration of spermatogenesis. The calculated cycle lengths were 8.35 days for S. araneus and 12.12 days for C. russula. The data obtained in the present study provide the basis for future investigations into the effects of metabolic rate and mating systems on the speed of spermatogenesis.
Resumo:
Sustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Resumo:
Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst-pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.
Resumo:
Aim: Aquaglyceroporin-9 (AQP9) is a member of the Aquaporin channel family involved in water flux through plasma membranes and exhibits the distinctive feature of also being permeable to glycerol and monocarboxylates. AQP9 is detected in astrocytes and catecholaminergic neurons.1 However, the presence of AQP9 in the brain is now debated after a recent publication claiming that AQP9 is not expressed in the brain.2 Based on our results,3 we have evidence of the presence of AQP9 in the brain and we further hypothesize that AQP9 plays a functional role in brain energy metabolism. Methods: The presence of AQP9 in brain of OF1 mice was studied by RT-PCR and immunohistochemistry. To address the role of AQP9 in brain, we used commercial siRNA against AQP9 to knockdown its expression in 2 cultures of astrocytes from two distinct sources (from differentiated stem cells4 and primary astrocyte cultures). After assessment of the decrease of AQP9, glycerol uptake was measured using [H3]-glycerol. Then, modifications of the astrocytic energy metabolism was evaluated by measurement of glucose consumption, lactate release5 and evaluation of the mitochondrial activity by MTT staining. Results: AQP9 is expressed in astrocytes of OF1 mouse brain (mRNA and protein levels). We also showed that AQP9 mRNA and protein are present in cultured astrocytes. Four days after AQP9 siRNA application, the level of expression is significantly decreased by 76% compared to control. Astrocytes with AQP9 knockdown exhibit a 23% decrease of glycerol uptake, showing that AQP9 is a glycerol channel in cultured astrocytes. In parallel, astrocytes with AQP9 knockdown have a 155% increase of their glucose consumption without modifications of lactate release. Moreover, considering the observed glucose consumption increase and the absence of proliferation induction, the significant MTT activity increase (113%) suggests an increase of oxidative metabolism in astrocytes with AQP9 knockdown. Discussion: The involvement of AQP9 in astrocyte energy metabolism adds a new function for this channel in the brain. The determination of the role of AQP9 in astrocytes provides a new perspective on the controversial expression of AQP9 in brain. We also suggest that AQP9 may have a complementary role to monocarboxylate transporters in the regulation of brain energy metabolism.
Resumo:
The haemodynamic effects of the sympathetic nervous system (SNS) activations elicited by hypoglycaemia, acute alcohol administration, or insulin can be prevented by a pretreatment with dexamethasone in humans. This suggests a possible role of central corticotropin releasing hormone (GRIT) release. Mental stress activates the SNS, and decreases systemic vascular resistances though a beta-adrenergic-mediated vasodilation thought to involve vascular nitric oxide release. It also increases insulin-mediated glucose disposal, an effect presumably related to vasodilation. In order to evaluate whether activation of SNS by mental stress is glucocorticoid-sensitive, we monitored the haemodynamic and metabolic effects of mental stress during hyperinsulinaemia in healthy humans with and without a 2-day treatment with 8 mg day(-1) dexamethasone. Mental stress decreased systemic vascular resistances by 21.9% and increased insulin-mediated glucose disposal by 2 8.4% without dexamethasone pretreatment. After 2 days of dexamethasone treatment, whole body insulin-mediated glucose disposal was decreased by 40.8%. The haemodynainic effects of mental stress were however, not affected. Mental stress acutely increased insulin-mediated glucose disposal by 28.0%. This indicates that mental stress elicits a stimulation of SNS through dexamethasone-insensitive pathway, distinct of those activated by insulin, alcohol, or hyperglycaemia.
Resumo:
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
Resumo:
AIMS: We examined, in a country of the African region, i) the prevalence of the metabolic syndrome (MetS) according to three definitions (ATP, WHO and IDF); ii) the distribution of the MetS criteria; iii) the level of agreement between these three definitions and iv) we also examined these issues upon exclusion of people with diabetes. METHODS: We conducted an examination survey on a sample representative of the general population aged 25-64 years in the Seychelles (Indian Ocean, African region), attended by 1255 participants (participation rate of 80.3%). RESULTS: The prevalence of MetS increased markedly with age. According to the ATP, WHO and IDF definitions, the prevalence of MetS was, respectively, 24.0%, 25.0%, 25.1% in men and 32.2%, 24.6%, 35.4% in women. Approximately 80% of participants with diabetes also had MetS and the prevalence of MetS was approximately 7% lower upon exclusion of diabetic individuals. High blood pressure and adiposity were the criteria found most frequently among MetS holders irrespective of the MetS definitions. Among people with MetS based on any of the three definitions, 78% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. CONCLUSION: We identified a high prevalence of MetS in this population in epidemiological transition. The prevalence of MetS decreased by approximately 32% upon exclusion of persons with diabetes. Because of limited agreement between the MetS definitions, the fairly similar proportions of MetS based on any of the three MetS definitions classified, to a substantial extent, different subjects as having MetS.
Resumo:
This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.
Resumo:
BACKGROUND/AIMS: Supplementation with certain probiotics can improve gut microbial flora and immune function but should not have adverse effects. This study aimed to assess the risk of D-lactate accumulation and subsequent metabolic acidosis in infants fed on formula containing Lactobacillus johnsonii (La1). METHODS: In the framework of a double-blind, randomized controlled trial enrolling 71 infants aged 4-5 months, morning urine samples were collected before and 4 weeks after being fed formulas with or without La1 (1 x 10(8)/g powder) or being breastfed. Urinary D- and L-lactate concentrations were assayed by enzymatic, fluorimetric methods and excretion was normalized per mol creatinine. RESULTS: At baseline, no significant differences in urinary D-/L-lactate excretion among the formula-fed and breastfed groups were found. After 4 weeks, D-lactate excretion did not differ between the two formula groups, but was higher in both formula groups than in breastfed infants. In all infants receiving La1, urinary D-lactate concentrations remained within the concentration ranges of age-matched healthy infants which had been determined in an earlier study using the same analytical method. Urinary L-lactate also did not vary over time or among groups. CONCLUSIONS: Supplementation of La1 to formula did not affect urinary lactate excretion and there is no evidence of an increased risk of lactic acidosis.