753 resultados para mechanical damages
Resumo:
In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair-hair friction coefficient, and body angle exists. The hair-hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here.
Resumo:
This paper describes a new mechanical samples positioning system that allows the safe placement and removal of biological samples for prolonged irradiation, in a nuclear reactor during full-power continuous operation. Also presented herein the materials of construction and operating principles. Additionally, this sample positioning system is compared with an existing pneumatic and automated transfer system, already available at the research reactors. The system consists of a mechanical arm with a claw, which can deliver the samples for irradiations without reactor shutdown. It was installed in the lEA-R1 research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, Brazil, and for the past 5 years, the system has successfully operated and allowed the conducting of important experiments. As a result of its introduction, the facility has been in a position to positively respond to the increased demand in studies of biology, medicine, physics, engineering, detector/dosimeter calibrations, etc. It is one example of the appropriated technologies that save energy and resources. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The electronic properties of liquid hydrogen fluoride (HF) were investigated by carrying out sequential quantum mechanics/Born-Oppenheimer molecular dynamics. The structure of the liquid is in good agreement with recent experimental information. Emphasis was placed on the analysis of polarisation effects, dynamic polarisability and electronic excitations in liquid HF. Our results indicate an increase in liquid phase of the dipole moment (similar to 0.5 D) and isotropic polarisability (5%) relative to their gas-phase values. Our best estimate for the first vertical excitation energy in liquid HF indicates a blue-shift of 0.4 +/- 0.2 eV relative to that of the gas-phase monomer (10.4 eV). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A very high level of theoretical treatment (complete active space self-consistent field CASSCF/MRCI/aug-cc-pV5Z) was used to characterize the spectroscopic properties of a manifold of quartet and doublet states of the species BeP, as yet experimentally unknown. Potential energy curves for 11 electronic states were obtained, as well as the associated vibrational energy levels, and a whole set of spectroscopic constants. Dipole moment functions and vibrationally averaged dipole moments were also evaluated. Similarities and differences between BeN and BeP were analysed along with the isovalent SiB species. The molecule BeP has a X (4)Sigma(-) ground state, with an equilibrium bond distance of 2.073 angstrom, and a harmonic frequency of 516.2 cm(-1); it is followed closely by the states (2)Pi (R(e) = 2.081 angstrom, omega(e) = 639.6 cm(-1)) and (2)Sigma(-) (R(e) = 2.074 angstrom, omega(e) = 536.5 cm(-1)), at 502 and 1976 cm(-1), respectively. The other quartets investigated, A (4)Pi (R(e) = 1.991 angstrom, omega(e) = 555.3 cm(-1)) and B (4)Sigma(-) (R(e) = 2.758 angstrom, omega(e) = 292.2 cm(-1)) lie at 13 291 and 24 394 cm(-1), respectively. The remaining doublets ((2)Delta, (2)Sigma(+)(2) and (2)Pi(3)) all fall below 28 000 cm(-1). Avoided crossings between the (2)Sigma(+) states and between the (2)Pi states add an extra complexity to this manifold of states.
Resumo:
This work describes the partial oxypropylation of filter paper cellulose fibers, employing two different basic catalyst, viz., potassium hydroxide and 1,4-diazabicyclo [2.2.2] octane, to activate the hydroxyl groups of the polysaccharide and thus provide the anionic initiation sites for the ""grafting-from"" polymerization of propylene oxide. The success of this chemical modification was assessed by FTIR spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis and contact angle measurements. The study of the role of the catalyst employed on the extent of the modification and on the mechanical properties of the ensuing composites, after hot pressing, showed that both the Bronsted and the Lewis base gave satisfactory results, without any marked difference.
Resumo:
The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.
Resumo:
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to evaluate the effect of the storage time on the thermal properties of triethylene glycol dimethacrylate/2,2-bis[4-(2-hydroxy-3-methacryloxy-prop-1-oxy)-phenyl]propane bisphenyl-alpha-glycidyl ether dimethacrylate (TB) copolymers used in formulations of dental resins after photopolymerization. The TB copolymers were prepared by photopolymerization with an Ultrablue IS light-emitting diode, stored in the dark for 160 days at 37 degrees C, and characterized with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy with attenuated total reflection. DSC curves indicated the presence of an exothermic peak, confirming that the reaction was not completed during the photopolymerization process. This exothermic peak became smaller as a function of the storage time and was shifted at higher temperatures. In DMA studies, a plot of the loss tangent versus the temperature initially showed the presence of two well-defined peaks. The presence of both peaks confirmed the presence of residual monomers that were not converted during the photopolymerization process. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 679-684, 2009
Resumo:
Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.
Resumo:
A Scots pine (Pinus sylvestris) progeny trial was established in 1990, in the southwestern part of Sweden. The offspring was from 30 plus trees. The trial is located on abandoned agricultural land and has a single tree block design with a variation in spacing. The trial has been damaged by voles. At a tree age of ten years, growth, damages and branch properties were estimated. An analysis of variance on height, diameter and stem volume shows significant difference between spacing and progenies as well as interactions between these factors. As indicated by a better annual height increment and fewer and thinner branches at each whorl the densest spacing has the highest potential to produce quality logs.There were also differences between progenies in growth and quality traits. Some progenies combined good growth and branch characters with low mortality, straight stems and few damages. Other progenies had superior volume production.
Resumo:
A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.
Resumo:
The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment. In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties. Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.
Resumo:
This article demonstrates the existence of civil responsibility with punitive purposes in Brazilian Law, explaining how it was introduced by jurisdictional activity in cases involving moral damages. Next, it points out main problems this situation represents to Brazilian Law from the standpoint of our juridical dogmatics and public policies. Additionally, it proposes the execution of an empirical research for comprehension of the structure and fundamentals of jurisprudence on the punitive character of civil responsibility for moral damages and establishes criteria for use in this research based on theories of punishment. Finally, it positions the problem of punitive function of civil responsibility in the broader ambit of relationships and boundaries between civil and criminal responsibility.
Resumo:
Over the past two decades there has been a profusion of empirical studies of organizational design and its relationship to efficiency, productivity and flexibility of an organization. In parallel, there has been a wide range of studies about innovation management in different kind of industries and firms. However, with some exceptions, the organizational and innovation management bodies of literature tend to examine the issues of organizational design and innovation management individually, mainly in the context of large firms operating at the technological frontier. There seems to be a scarcity of empirical studies that bring together organizational design and innovation and examine them empirically and over time in the context of small and medium sized enterprises. This dissertation seeks to provide a small contribution in that direction. This dissertation examines the dynamic relationship between organizational design and innovation. This relationship is examined on the basis of a single-case design in a medium sized mechanical engineering company in Germany. The covered time period ranges from 1958 until 2009, although the actual focus falls on the recent past. This dissertation draws on first-hand qualitative empirical evidence gathered through extensive field work. The main findings are: 1. There is always a bundle of organizational dimensions which impacts innovation. These main organizational design dimensions are: (1) Strategy & Leadership, (2) Resources & Capabilities, (3) Structure, (4) Culture, (5) Networks & Partnerships, (6) Processes and (7) Knowledge Management. However, the importance of the different organizational design dimensions changes over time. While for example for the production of simple, standardized parts, a simple organizational design was appropriate, the company needed to have a more advanced organizational design in order to be able to produce customized, complex parts with high quality. Hence the technological maturity of a company is related to its organizational maturity. 2. The introduction of innovations of the analyzed company were highly dependent on organizational conditions which enabled their introduction. The results of the long term case study show, that some innovations would not have been introduced successfully if the organizational elements like for example training and qualification, the build of network and partnerships or the acquisition of appropriate resources and capabilities, were not in place. Hence it can be concluded, that organizational design is an enabling factor for innovation. These findings contribute to advance our understanding of the complex relationship between organizational design and innovation. This highlights the growing importance of a comprehensive, innovation stimulating organizational design of companies. The results suggest to managers that innovation is not only dependent on a single organizational factor but on the appropriate, comprehensive design of the organization. Hence manager should consider to review regularly the design of their organizations in order to maintain a innovation stimulating environment.
Resumo:
Neste trabalho estuda-se a formação de novas fases de carbono amorfo através da irradiação iônica de filmes de fulereno, a-C e a-C:H polimérico. Os efeitos da irradiação iônica na modificação das propriedades ópticas e mecânicas dos filmes de carbono irradiados são analisados de forma correlacionada com as alterações estruturais a nivel atômico. O estudo envolve tanto a análise dos danos induzidos no fulereno pela irradiação iônica a baixas fluências, correspondendo a baixas densidades de energia depositada, quanto a investigação das propriedades físico-químicas das fases amorfas obtidas após irradiações dos filmes de fulereno, a-C e a-C:H com altas densidades de energia depositada. As propriedades ópticas, mecânicas e estruturais das amostras são analisadas através de técnicas de espectroscopia Raman e infravermelho, espectrofotometria UV-VIS-NIR, microscopias ópticas e de força atômica, nanoindentação e técnicas de análise por feixe de íons, tais como retroespalhamento Rutherford e análises por reação nuclear. As irradiações produzem profundas modificações nas amostras de fulereno, a-C e a-C:H, e por conseqüência significativas alterações em suas propriedades ópticas e mecânicas. Após máximas fluências de irradiação fases amorfas rígidas (com dureza de 14 e 17 GPa) e com baixos gaps ópticos (0,2 e 0,5 eV) são formadas. Estas estruturas não usuais correspondem a arranjos atômicos com 90 a 100% de estados sp2. Em geral fases sp2 são planares e apresentam baixa dureza, como predito pelo modelo de “cluster”. Entretanto, os resultados experimentais mostram que as propriedades elásticas das novas fases formadas são alcançadas através da criação de uma estrutura sp2 tridimensional. A indução de altas distorções angulares, através da irradiação iônica, possibilita a formação de anéis de carbono não hexagonais, tais como pentágonos e heptágonos, permitindo assim a curvatura da estrutura. Utilizando um modelo de contagem de vínculos é feita uma análise comparativa entre a topologia (estrutura geométrica) de ligações C-sp2 e as propriedades nanomecânicas. São comparados os efeitos de estruturas sp2 planares e tridimensionais (aleatórias) no processo de contagem de vínculos e, conseqüentemente, nas propriedades elásticas de cada sistema. Os resultados mostram que as boas propriedades mecânicas das novas fases de carbono formadas seguem as predições do modelo de vínculos para uma rede atômica sp2 tridimensional. A formação de uma fase amorfa dura e 100% sp2 representa uma importante conquista na procura de novas estruturas rígidas de carbono. A síntese da estrutura desordenada sp2 tridimensional e vinculada aqui apresentada é bastante incomum na literatura. O presente trabalho mostra que o processo de não-equilíbrio de deposição de energia durante a irradiação iônica permite a formação de distorções angulares nas ligações sp2-C, possibilitando a criação de estruturas grafíticas tridimensionais.