956 resultados para marine and estuarine mangroves
Resumo:
During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.
Resumo:
The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.
Resumo:
We present an update of the "key points" from the Antarctic Climate Change and the Environment (ACCE) report that was published by the Scientific Committee on Antarctic Research (SCAR) in 2009. We summarise subsequent advances in knowledge concerning how the climates of the Antarctic and Southern Ocean have changed in the past, how they might change in the future, and examine the associated impacts on the marine and terrestrial biota. We also incorporate relevant material presented by SCAR to the Antarctic Treaty Consultative Meetings, and make use of emerging results that will form part of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report.
Resumo:
Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface water and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox) may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly considers three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.
Resumo:
Archaea, one of the three major domains of extant life, was thought to comprise predominantly microorganisms that inhabit extreme environments, inhospitable to most Eucarya and Bacteria. However, molecular phylogenetic surveys of native microbial assemblages are beginning to indicate that the evolutionary and physiological diversity of Archaea is far greater than previously supposed. We report here the discovery and preliminary characterization of a marine archaeon that inhabits the tissues of a temperate water sponge. The association was specific, with a single crenarchaeal phylotype inhabiting a single sponge host species. To our knowledge, this partnership represents the first described symbiosis involving Crenarchaeota. The symbiotic archaeon grows well at temperatures of 10 degrees C, over 60 degrees C below the growth temperature optimum of any cultivated species of Crenarchaeota. Archaea have been generally characterized as microorganisms that inhabit relatively circumscribed niches, largely high-temperature anaerobic environments. In contrast, data from molecular phylogenetic surveys, including this report, suggest that some crenarchaeotes have diversified considerably and are found in a wide variety of lifestyles and habitats. We present here the identification and initial description of Cenarchaeum symbiosum gen. nov., sp. nov., a symbiotic archaeon closely related to other nonthermophilic crenarchaeotes that inhabit diverse marine and terrestrial environments.
Resumo:
The Mochica, or Moche (c. 100-800 AD) culture, flourished along the northern Peruvian coast. The Moche did not have a formal written language; as such, contemporary scholars base their analysis on Moche iconography and archaeological burial remains. Especially renown for their ceramic artistry, Moche vessels exhibit a wide range of subject matter, including animal and enigmatic figural representations that evoke terrestrial, marine and possibly, spiritual realms. While research has focused on political organization and the interrelationship between sacrifice and warfare, many marine themes have not been fully explored in the discourse. An exploration of sea lion imagery and sacrifice themes suggests that the marine mammals were ritually hunted. A careful iconographic analysis of island scenes demonstrates ritual and gender affiliations held by the Moche about sea lions. In a multi-disciplinary approach, scientific, archaeological and ethnographic resources substantiate this claim.