946 resultados para macular carotenoids
Resumo:
PURPOSE: We evaluate the functional and anatomic outcome after intravitreal ranibizumab treatment in patients with choroidal neovascularization (CNV) related to chronic central serous chorioretinopathy (CSC). METHODS: This is a small case series of 5 eyes with CNV associated with chronic CSC treated with intravitreal injection of 0.5 mg ranibizumab in the Jules Gonin University Eye Hospital from July 2007 to July 2009. Baseline and monthly follow-up visits included best-corrected visual acuity (BCVA), fundus examination, and optical coherence tomography (OCT). Fluorescein and indocyanine green angiography (ICG) were performed at baseline and repeated at least every 6 months. RESULTS: We studied 5 eyes of 4 patients with a mean age of 66 years. Mean follow-up was 21 months (SD 1.9). The mean number of intravitreal injections administered for each patient was 10 (SD 4.6). The mean initial BCVA was 0.23 (decimal equivalent) (logMAR 0.64, SD 0.13). At the last follow-up, mean BCVA was 0.44 decimal equivalent (logMAR 0.36, SD 0.31). Mean central macular thickness (CMT) measured with OCT was 330 microm (SD 43) at baseline and decreased at the final follow-up to 243 microm (SD 44 ). Persistent intraretinal or subretinal fluid on OCT and/or multifocal areas of increased choroidal permeability on ICG angiographies were present in all patients at the last follow-up visit. CONCLUSIONS: Intravitreal ranibizumab appeared to be an effective treatment of CNV related to chronic CSC. However, residual intraretinal or subretinal fluid and increased choroidal permeability persisted. Prospective controlled studies are warranted to evaluate the long-term safety and efficacy of intravitreal ranibizumab.
Resumo:
In human pathologies, therapeutic treatments are often limited by the lack of selectivity of drugs and their elevated effective concentrations. Targeting these agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body. Targeting could also improve treatment efficiency by allowing a localized high concentration of the agents. Based on the different behaviors and patterns of expression between diseased and normal cells, strategies for targeting can be explored. For example, receptors, proteases or trans-membrane carriers could be different or differently expressed. Many therapeutic procedures rely on this fact, including photodynamic therapy (PDT). PDT is already used in the treatment of some cancers, of inflammatory diseases and others diseases such as age-related macular degeneration or acne. PDT relies on the activation of a photosensitizer (PS) by visible light which results in the production of cytotoxic reactive oxygen species. In PDT, the general distribution of PS to the whole body leads to generalized photosensitization and poor acceptance of treatments by patients. One way to avoid these effects is to improve the targeting of PSs to diseased tissues using modification of PS with peptides or proteins that will target specific receptors or enzymes. PSs could also be functionalized with non-proteic ligands such as organometalics to achieve targeted and/or combined therapies. Alternatively, PSs could be encapsulated in nanoparticles bearing targeting agents which will decrease concentration of free circulating PS and improve photodynamic efficiency. These different approaches will be discussed in the present review with an emphasis on the use of peptides and proteins.
Resumo:
PURPOSE: To study the influence of retinal structural changes on oxygen saturation in retinitis pigmentosa (RP) patients. METHODS: Oximetry measurements were performed on 21 eyes of 11 RP patients and compared to 24 eyes of 12 controls. Retinal oxygen saturation was measured in all major retinal arterioles (A-SO₂) and venules (V-SO₂) with an oximetry unit of the retinal vessel analyser (IMEDOS Systems UG, Jena, Germany). Oximetry data were compared with morphological changes measured by Cirrus optical coherence tomography (OCT) (Carl Zeiss Meditec, Dublin, CA, USA, macular thickness protocol). RESULTS: In RP patients, the retinal A-SO₂ and V-SO₂ levels were higher at 99.3% (p = 0.001, anova based on mixed-effects model) and 66.8% (p < 0.001), respectively, and the difference between the two (A-V SO₂) was lower at 32.5% (p < 0.001), when compared to the control group (92.4%; 54.0%; 38.4%, respectively). With the RP group, the A-V SO₂ correlated positively, not only with central macular thickness, but also with retinal thickness, in zones 2 and 3 (p = 0.006, p = 0.007, p = 0.014). CONCLUSION: These data indicate that oxygen metabolism was altered in RP patients. Based on our preliminary results, retinal vessel saturation correlated with structural alterations in RP. This method could be valuable in monitoring disease progression and evaluating a potential therapeutic response.
Resumo:
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood-retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side - that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.
Resumo:
PURPOSE: To report the sudden onset of reversible Charles Bonnet syndrome precipitated byacute severe anemia. METHODS: The charts of three patients (Usher syndrome, bilateral macular degeneration, and bilateral retinal vein occlusion) with acute Charles Bonnet syndrome in the setting of severe anemia were reviewed. RESULTS: Anemia resulted from bladder surgery, recto-colitis, and severe urinary tract infection. Hemoglobin ranged from 78 to 86 g/L. Decreased visual acuity and formed visual hallucinations (giants, flowers, animals) were present in all three patients. Rapid reversal of Charles Bonnet syndrome and visual acuity improvement followed blood transfusion. CONCLUSIONS: Acute severe anemia can precipitate Charles Bonnet syndrome, which may be reversible by blood transfusion.
Resumo:
α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.
Resumo:
Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.
Resumo:
Drusen, the white yellowish deposits that can be seen in funduscopy, are a hallmark of age-related macular degeneration. Histologically, drusen are believed to be dome-shaped or more confluent lipid accumulations between the retinal pigment epithelium and the choriocapillaries. Recent advances in mouse funduscopy have revealed the presence of drusen-like structures in chemokine knockout animals in the absence of sizeable dome-shaped material below the retinal pigment epithelium. We show that aged CX3CR1-/- mice present with drusen-like appearance in funduscopy that is associated with a progressive age-related microglial cell accumulation in the subretinal space. We demonstrate that the anatomical equivalent of the drusen-like appearance in these mice are lipid-bloated subretinal microglial cells rather than subretinal pigment epithelium deposits [Combadière C, et al: J Clin Invest 2007;117:2920-2928].
Resumo:
Purpose:Coats' disease is a non-hereditary condition characterized by idiopathic retinal telangiectasia, and exudative retinopathy. Although the exudation often spreads from the main areas of telangiectasia, there is a preferential accumulation of exudation in the macular area in Coats' disease. A subfoveal nodule has usually been described in the context of resolution of macular exudates after treatment of peripheral retinal telangiectasis. Nevertheless, a recent reports stressed out an uncommon prominent subfoveal nodule with peripheral exudates as initial presentation of Coats'disease. The purpose of this study was to report the prevalence of this presentation in a cohort of patients. Methods:All consecutive patients with Coats' disease referred to the Jules Gonin Eye Hospital between January 1979 and July 2006 were included. All charts were screened for a clear cut subfoveal circular lesion on fundus photographies at initial presentation. Results:95 patients suffering of Coat's disease were enrolled. 33 out of 95 patients had subtotal or total exudative retinal detachment, which impeded macular examination. 14 out of 62 (22.6%) resting patients presented with a clear cut prominent circular subfoveal lesion at initial presentation. All patients had unilateral disease. Mean age was 5.6 ± 3.5 year old at initial presentation. There were 4 females and 10 males. Pigmentation and size of the nodule were not homogenous. Mean diameter was 1.1 ± 0.5 optic disc diameter. Conclusions:The present study shows that subfoveal nodule is not such a rare primary presentation of Coats' disease in contrast to what it has been previously reported in the literature. Thus the initial finding of prominent subfoveal nodule associated with peripheral retinal findings made the diagnosis of Coats' disease highly likely.Physicians should be aware that a proeminent subfoveal nodule is a common initial presentation of Coats' disease as it can be confused clinically with Retinoblastoma.
Resumo:
Purpose: To describe the genotype/phenotype correlation associated with homozygous p.R108X mutation in the SPATA7 gene. Methods: A consanguineous nuclear family of Ethiopian origin was ascertained for genotypic and phenotypic characterization, including fundus photography, fundus autofluorescence (FAF), and full-field ERG. Molecular diagnosis was performed using a microarray. Results: Two of the 5 family members were affected with LCA. A homozygous c.322C>T (p.R108X) mutation in exon 5 of SPATA-7 was identified in both of them. The patients were 4 and 11 years old, respectively. Fundus examination revealed an unremarkable macular area, but optic nerve pallor, attenuated vascular calibre and deep retinal nummular deposits with para-arterial sparing predominant in the midperiphery. FAF showed multiples areas of hyperautofluorescence, corresponding to the deep retinal deposits. ERG was not recordable in the young patient, and showed severe rods/cones dysfunction in the older one. Conclusions: The literature describing genotype/phenotype correlation of SPATA-7 mutations in Leber congenital amaurosis (LCA) is still limited. We report the occurrence of para-arterial sparing in two sibs with SPATA7-linked LCA which may represent a clinical marker of this condition.
Resumo:
BACKGROUND: Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS: We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS: Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS: Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells.
Resumo:
OBJECTIVE: To identify disease causing mutation in three generations of a Swiss family with pattern dystrophy and high intrafamilial variability of phenotype. To assess the effect of intravitreal ranibizumab injections in the treatment of subfoveal choroidal neovascularization associated with pattern dystrophy in one patient. METHODS: Affected family members were ascertained for phenotypic and genotypic characterization. Ophthalmic evaluations included fundus photography, autofluorescence imaging, optical coherence tomography, and International Society for Clinical Electrophysiology of Vision standard full-field electroretinography. When possible family members had genetic testing. The proband presented with choroidal neovascularization and had intravitreal injections as needed according to visual acuity and optical coherence tomography. RESULTS: Proband had a multifocal type pattern dystrophy, and his choroidal neovascularization regressed after four intravitreal injections. The vision improved from 0.8 to 1.0, and optical coherence tomography showed complete anatomical restoration. A butterfly-shaped pattern was observed in her cousin, whereas a fundus pulverulentus pattern was seen in a second cousin. Aunt had a multifocal atrophic appearance, simulating geographic atrophy in age-related macular degeneration. The Y141C mutation was identified in the peripherin/RDS gene and segregated with disease in the family. CONCLUSION: This is the first report of marked intrafamilial variation of pattern dystrophy because of peripherin/RDS Y141C mutation. Intravitreal ranibizumab injections might be a valuable treatment for associated subfoveal choroidal neovascularization.