919 resultados para lower exercise capacity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even in the absence of food intake, several animal species recovering from physical activity of high intensity can replenish completely their muscle glycogen stores. In some species of mammals, such as in rats and humans, glycogen repletion is only partial, thus suggesting that a few consecutive bouts of high-intensity exercise might eventually lead to the sustained depletion of their muscle glycogen. In order to test this prediction, groups of rats with a lead weight of 10% body mass attached to their tails were subjected to either one, two or three bouts of high-intensity swimming, each bout being separated from the next by a 1 h recovery period. Although glycogen repletion after the first bout of exercise was only partial, all the glycogen mobilised in subsequent bouts was completely replenished during the corresponding recovery periods and irrespective of muscle fibre compositions. The impact of repeated bouts of high-intensity exercise on plasma levels of fatty acids, acetoacetate and β-hydroxybutyrate suggests that the metabolic state of the rat prior to the second and third bouts of exercise was different from that before the first bout. In conclusion, rats resemble other vertebrate species in that without food intake there are conditions under which they can replenish completely their muscle glycogen stores from endogenous carbon sources when recovering from high-intensity exercise. It remains to be established, however, whether this capacity is typical of mammals in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen plays a major role in supporting the energy demands of skeletal muscles during high intensity exercise. Despite its importance, the amount of glycogen stored in skeletal muscles is so small that a large fraction of it can be depleted in response to a single bout of high intensity exercise. For this reason, it is generally recommended to ingest food after exercise to replenish rapidly muscle glycogen stores, otherwise one's ability to engage in high intensity activity might be compromised. But what if food is not available? It is now well established that, even in the absence of food intake, skeletal muscles have the capacity to replenish some of their glycogen at the expense of endogenous carbon sources such as lactate. This is facilitated, in part, by the transient dephosphorylation-mediated activation of glycogen synthase and inhibition of glycogen phosphorylase. There is also evidence that muscle glycogen synthesis occurs even under conditions conducive to an increased oxidation of lactate post-exercise, such as during active recovery from high intensity exercise. Indeed, although during active recovery glycogen resynthesis is impaired in skeletal muscle as a whole because of increased lactate oxidation, muscle glycogen stores are replenished in Type IIa and IIb fibers while being broken down in Type I fibers of active muscles. This unique ability of Type II fibers to replenish their glycogen stores during exercise should not come as a surprise given the advantages in maintaining adequate muscle glycogen stores in those fibers that play a major role in fight or flight responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the effects of exercise training on adipose tissue and skeletal muscle GLUT4 expression in patients with type 2 diabetes (T2D). Muscle and adipose tissue samples were obtained before and after 4-weeks of exercise training in seven patients with T2D [47 ± 2 years, body mass index (BMI) 28 ± 2]. Seven control subjects (54 ± 4, BMI 30 ± 2) were recruited for baseline comparison. Adipose tissue GLUT4 protein expression was 43% lower (p < 0.05) in patients with T2D compared with control subjects and exercise training increased (p < 0.05) adipose tissue GLUT4 expression by 36%. Skeletal muscle GLUT4 protein expression was not different between control subjects and patients with T2D. Exercise training increased (p < 0.05) skeletal muscle GLUT4 protein expression by 20%. In conclusion, 4-weeks of exercise training increased GLUT4 expression in adipose tissue and skeletal muscle of patients with T2D, although the functional benefits of this adaptation appear to be dependent on an optimal β-cell function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:

Exercise during hemodialysis treatments improves physical function, markers of cardiovascular disease and quality of life. However, exercise programs are not a part of standard therapy in the vast majority of hemodialysis clinics internationally. Hemodialysis unit-based accredited exercise physiologists may contribute to an increased intradialytic exercise uptake and improved physical function.

Methods and design:
This is a stepped wedge cluster randomised controlled trial design. A total of 180 participants will be recruited from 15 community satellite hemodialysis clinics in a large metropolitan Australian city. Each clinic will represent a cluster unit. The stepped wedge design will consist of three groups each containing five randomly allocated cluster units, allocated to either 12, 24 or 36 weeks of the intervention. The intervention will consist of an accredited exercise physiologist-coordinated program consisting of six lower body resistance exercises using resistance elastic bands and tubing. The resistance exercises will include leg abduction, plantar flexion, dorsi flexion, straight-leg/bent-knee raise, knee extension and knee flexion. The resistance training will incorporate the principle of progressive overload and completed in a seated position during the first hour of hemodialysis treatment. The primary outcome measure is objective physical function measured by the 30-second sit to stand test. Secondary outcome measures include the 8-foot timed-up-and-go test, the four square step test, quality of life, cost-utility analysis, uptake and involvement in community activity, self-reported falls, fall's confidence, medication use, blood pressure and morbidity (hospital admissions).

Discussion:
The results of this study are expected to determine the efficacy of an accredited exercise physiologist supervised resistance training on the physical function of people receiving hemodialysis and the cost-utility of exercise physiologists in hemodialysis centres. This may contribute to intradialytic exercise as standard therapy using an exercise physiologist workforce model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increase in the concentration of serotonin in the brain has been shown to cause fatigue during exercise in humans and experimental animals. This type of fatigue is referred to as central fatigue and is likely to be mediated by the concentration of serotonin as well as serotonin receptor sensitivity. Serotonin (5-HT) receptor antagonism in humans and experimental animals has been shown to improve endurance performance. A previous report has shown decreased receptor sensitivity in athletes compared to sedentary controls. It is unclear whether this is due to a training adaptation or if individuals are predisposed to enhanced athletic performance due to their inherent decreased receptor sensitivity. The present study investigated changes in 5-HT receptor sensitivity in response to aerobic exercise. Subjects completed 3 × 30 min of stationary cycling at 70% of their peak aerobic power (V̇O2,peak) for 9 weeks. Serotonin receptor sensitivity was assessed indirectly by measuring the neuroendocrine response following administration of a serotonin agonist (buspirone hydrochloride). The neuroendocrine response following administration of a placebo was also investigated in a blind crossover design. A group of sedentary control subjects was also recruited to control for seasonal variations in central receptor sensitivity. The training caused a significant increase in V̇O2,peak (3.1 ± 0.16 to 3.6 ± 0.15 l min−1, P < 0.05) and endurance capacity (93 ± 8 to 168 ± 11 min, P < 0.05), but there was no change (P > 0.05) in the neuroendocrine response in the presence of a serotonin agonist. However, one-quarter of the subjects in the training group demonstrated decreases in receptor sensitivity. These results suggest that despite increases in V̇O2,peak and endurance performance, there was no measurable change in 5-HT receptor sensitivity in the presence of a serotonin agonist. In addition, it is possible that changes in receptor sensitivity may take longer to occur, that the training stimulus used in the present investigation was inadequate and/or that changes occurred in receptor subtypes that were not probed by the agonist used in the present investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose
To examine the effects of four commonly used recovery treatments applied between two bouts of intense endurance cycling on the performance of the second bout in normothermia (~21 °C).

Methods
Nine trained men completed two submaximal exhaustive cycling bouts (Ex1 and Ex2: 5 min at ~50 % V˙O2 peak, followed by 5 min at ~60 % V˙O2 peak and then ~80 % V˙O2 peak to failure) separated by 30 min of (a) cold water immersion at 15 °C (C15), (b) contrast water therapy alternating 2.5 min at 8 °C and 2.5 min at 40 °C (CT), (c) thermoneutral water immersion at 34 °C (T34) and (d) cycling at ~40 % V˙O2 peak (AR).

Results
Exercise performance, cardiovascular and metabolic responses during Ex1 were similar among all trials. However, time to failure (~80 % V˙O2 peak bout) during Ex2 was significantly (P < 0.05) longer in C15 (18.0 ± 1.6) than in CT (14.5 ± 1.5), T34 (12.4 ± 1.4) and AR (10.6 ± 1.0); and it was also longer (P < 0.05) in CT than AR. Core temperature and heart rate were significantly (P < 0.05) lower during the initial ~15 min of Ex2 during C15 compared with all other conditions but they reached similar levels at the end of Ex2.

Conclusions
A 30 min period of C15 was more beneficial in maintaining intense submaximal cycling performance than CT, T34 and AR; and CT was also more beneficial than T34 and AR. These effects were not mediated by the effect of water immersion per se, but by the continuous (C15) or intermittent (CT) temperature stimulus (cold) applied throughout the recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SUMMARY
Background & aims
It has been previously reported that pasta containing wholegrain sorghum flour exhibits high content of polyphenols and antioxidant capacity and hence might enhance antioxidant status and reduce markers of oxidative stress in vivo; however no clinical studies have yet been reported. Therefore, the present study assessed the effect of pasta containing red or white wholegrain sorghum flour on plasma total polyphenols, antioxidant capacity and oxidative stress markers in humans. The study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN: 12612000324819).

Methods
In a randomised crossover design, healthy subjects (n = 20) consumed three test meals of control pasta (CP), 30% red sorghum pasta (RSP) or 30% white sorghum pasta (WSP), 1–2 wk apart. The test meals were consumed as breakfast after an overnight fast. Blood samples were obtained at fasting and 2 h after consumption and analysed for total polyphenols, antioxidant capacity, superoxide dismutase (SOD) activity, protein carbonyl and 8-isoprostanes.

Results
Compared to baseline, the 2 h post-prandial levels following the RSP meal of plasma polyphenols, antioxidant capacity and SOD activity were significantly (P < 0.001) higher while the protein carbonyl level was significantly lower (P = 0.035). Furthermore, net changes in polyphenols, antioxidant capacity and SOD activity were significantly (P < 0.001) higher while protein carbonyl were significantly (P = 0.035) lower following consumption of the RSP meal than the CP meal.

Conclusion
The results demonstrated that pasta containing red wholegrain sorghum flour enhanced antioxidant status and diminished marker of oxidative stress in healthy subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional views on the metabolic derangements underlying insulin resistance and Type 2 diabetes have been largely “glucocentric” in nature, focusing on the hyperglycemic and/or hyperinsulinemic states that result from impaired glucose tolerance. But in addition to glucose intolerance, there is a coordinated breakdown in lipid dynamics in individuals with insulin resistance, manifested by elevated levels of circulating free fatty acids, diminished rates of lipid oxidation, and excess lipid accumulation in skeletal muscle and/or liver. This review examines the premise that an oversupply and/or accumulation of lipid directly inhibits insulin action on glucose metabolism via changes at the level of substrate competition, enzyme regulation, intracellular signaling, and/or gene transcription. If a breakdown in lipid dynamics is causal in the development of insulin resistance (rather than a coincidental feature resulting from it), it should be possible to demonstrate that interventions that improve lipid homeostasis cause reciprocal changes in insulin sensitivity. Accordingly, the efficacy of aerobic endurance training in human subjects in mediating the association between deranged lipid metabolism and insulin resistance will be examined. It will be demonstrated that aerobic exercise training is a potent and effective primary intervention strategy in the prevention and treatment of individuals with insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined whole-body insulin sensitivity, long-chain fatty acyl coenzyme A (LCACoA) content, skeletal muscle triglyceride (TGm) concentration, fatty acid transporter protein content, and oxidative enzyme activity in eight patients with type 2 diabetes (TYPE 2); six healthy control subjects matched for age (OLD), body mass index, percentage of body fat, and maximum pulmonary O2 uptake; nine well-trained athletes (TRAINED); and four age-matched controls (YOUNG). Muscle biopsies from the vastus lateralis were taken before and after a 2-h euglycemic-hyperinsulinemic clamp. Oxidative enzyme activities, fatty acid transporters (FAT/CD36 and FABPpm), and TGm were measured from basal muscle samples, and total LCACoA content was determined before and after insulin stimulation. Whole-body insulin-stimulated glucose uptake was lower in TYPE 2 (P < 0.05) than in OLD, YOUNG, and TRAINED. TGm was elevated in TYPE 2 compared with all other groups (P < 0.05). However, both basal and insulin-stimulated skeletal muscle LCACoA content were similar. Basal citrate synthase activity was higher in TRAINED (P < 0.01), whereas β-hydroxyacyl CoA dehydrogenase activity was higher in TRAINED compared with TYPE 2 and OLD. There was a significant relationship between the oxidative capacity of skeletal muscle and insulin sensitivity (citrate synthase, r = 0.71, P < 0.001; β-hydroxyacyl CoA dehydrogenase, r = 0.61, P = 0.001). No differences were found in FAT/CD36 protein content between groups. In contrast, FABPpm protein was lower in OLD compared with TYPE 2 and YOUNG (P < 0.05). In conclusion, despite markedly elevated skeletal muscle TGm in type 2 diabetic patients and strikingly different levels of whole-body glucose disposal, both basal and insulin-stimulated LCACoA content were similar across groups. Furthermore, skeletal muscle oxidative capacity was a better predictor of insulin sensitivity than either TGm concentration or long-chain fatty acyl CoA content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effectiveness of a short-duration (5-6 min, 3 d·wk) resistive exercise program with (RVE) or without (RE) whole-body vibration in reducing muscle atrophy in the lower limb during prolonged inactivity when compared with that in an inactive control group. METHODS: As part of the second Berlin BedRest Study, 24 male subjects underwent 60 d of head-down tilt bed rest. Using magnetic resonance imaging, muscle volumes of the individual muscles of the lower limb were calculated before and at various intervals during and after bed rest. Pain levels and markers of muscle damage were also evaluated during and after bed rest. Adjustment of P values to guard against false positives was performed via the false discovery rate method. RESULTS: On the "intent-to-treat" analysis, RE reduced atrophy of the medial and lateral gastrocnemius, soleus, vasti, tibialis posterior, flexor hallucis longus, and flexor digitorum longus (P ≤ 0.045 vs control group) and RVE reduced atrophy of the medial and lateral gastrocnemius and tibialis posterior (P ≤ 0.044). Pain intensity reports after bed rest were lower in RE at the foot (P ≤ 0.033) and whole lower limb (P = 0.01) and in RVE at the thigh (P ≤ 0.041), lower leg (P ≤ 0.01), and whole lower limb (P ≤ 0.036). Increases in sarcomere-specific creatine kinase after bed rest were less in RE (P = 0.020) and RVE (P = 0.020). No differences between RE and RVE were observed. CONCLUSIONS: In conclusion, a short-duration RVE or RE can be effective in reducing the effect of prolonged bed rest on lower extremity muscle volume loss during bed rest and muscle damage and pain after bed rest. Copyright © 2014 by the American College of Sports Medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The phosphorylation of p70S6 Kinase (p70S6K) is an important step in the initiation of protein translation. p70S6K phosphorylation is enhanced with graded intakes of whey protein after resistance exercise. Soy protein ingestion results in lower muscle protein synthesis after exercise compared with whey; however, the underlying mechanisms responsible for this difference have not been reported. FINDINGS: 13 older men (60-75) completed an acute bout of lower body resistance exercise and ingested 30 g of soy protein or carbohydrate. Muscle biopsies were obtained in the rested and fasted state and 2 and 4 hours post exercise. Phosphorylation status of p70S6K was measured with western blot. Results were compared with previously reported data from the ingestion of 30 g of whey protein or placebo. p70S6K phosphorylation was increased 2, but not 4 hours post exercise with soy protein ingestion. p70S6K phosphorylation was not increased post exercise with carbohydrate ingestion. CONCLUSIONS: Ingesting 30 g of either whey or soy protein resulted in equivalent p70S6K phosphorylation at 2 hours post exercise, however, unlike whey, soy protein failed to promote prolonged phosphorylation of p70S6K to 4 hours post-exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytokines are important mediators of various aspects of health and disease, including appetite, glucose and lipid metabolism, insulin sensitivity, skeletal muscle hypertrophy and atrophy. Over the past decade or so, considerable attention has focused on the potential for regular exercise to counteract a range of disease states by modulating cytokine production. Exercise stimulates moderate to large increases in the circulating concentrations of interleukin (IL)-6, IL-8, IL- 10, IL-1 receptor antagonist, granulocyte-colony stimulating factor, and smaller increases in tumor necrosis factor-α, monocyte chemotactic protein-1, IL-1β, brain-derived neurotrophic factor, IL-12p35/p40 and IL-15. Although many of these cytokines are also expressed in skeletal muscle, not all are released from skeletal muscle into the circulation during exercise. Conversely, some cytokines that are present in the circulation are not expressed in skeletal muscle after exercise. The reasons for these discrepant cytokine responses to exercise are unclear. In this review, we address these uncertainties by summarizing the capacity of skeletal muscle cells to produce cytokines, analyzing other potential cellular sources of circulating cytokines during exercise, and discussing the soluble factors and intracellular signaling pathways that regulate cytokine synthesis (e.g., RNA-binding proteins, microRNAs, suppressor of cytokine signaling proteins, soluble receptors).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bed rest results in marked vascular adaptations, and resistive vibration exercise (RVE) has been shown to be an effective countermeasure. As vibration exercise has practical and logistical limitations, the use of resistive exercise (RES) alone has the preference under specific circumstances. However, it is unknown if RES is sufficient to prevent vascular adaptations to bed rest. Therefore, the purpose of the present study was to examine the impact of RES and RVE on the vascular function and structure of the superficial femoral artery in young men exposed to 60 days of bed rest. Eighteen healthy men (age: 31 +/- 8 yr) were assigned to bed rest and randomly allocated to control, RES, or RVE groups. Exercise was applied 3 times/wk for 5-7 min/session. Resting diameter, blood flow, flow-mediated dilation (FMD), and dilator capacity of the superficial femoral artery were measured using echo-Doppler ultrasound. Bed rest decreased superficial femoral artery diameter and dilator capacity (P < 0.001), which were significantly attenuated in the RVE group (P < 0.01 and P < 0.05, respectively) but not in the RES group (P = 0.202 and P = 0.696, respectively). Bed rest significantly increased FMD (P < 0.001), an effect that was abolished by RVE (P < 0.005) but not RES (P = 0.078). Resting and hyperemic blood flow did not change in any of the groups. Thus, RVE abolished the marked increase in FMD and decrease in baseline diameter and dilator capacity normally associated with prolonged bed rest. However, the stimulus provided by RES alone was insufficient to counteract the vascular adaptations to bed rest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with medical, orthopaedic and surgical conditions are often assigned to bed-rest and/or immobilised in orthopaedic devices. Although such conditions lead to muscle atrophy, no studies have yet considered differential atrophy of the lower-limb musculature during inactivity to enable the development of rehabilitative exercise programmes. Bed-rest is a model used to simulate the effects of spaceflight and physical inactivity. Ten male subjects underwent 56-days of bed-rest. Magnetic resonance imaging of the lower-limbs was performed at 2-weekly intervals during bed-rest. Volume of individual muscles of the lower-limb and subsequently, rates of atrophy were calculated. Rates of atrophy differed (F = 7.4, p < 0.0001) between the muscles with the greatest rates of atrophy seen in the medial gastrocnemius, soleus and vastii (p < 0.00000002). The hamstring muscles were also affected (p < 0.00015). Atrophy was less in the ankle dorsiflexors and anteromedial hip muscles (p > 0.081). Differential rates of atrophy were seen in synergistic muscles (e.g. adductor magnus > adductor longus, p = 0.009; medial gastrocnemius > lateral gastrocnemius, p = 0.002; vastii > rectus femoris, p = 0.0002). These results demonstrate that muscle imbalances can occur after extended periods of reduced postural muscle activity, potentially hampering recovery on return to full upright body position. Such deconditioned patients should be prescribed "closed-chain" simulated resistance exercises, which target the lower-limb antigravity extensor muscles which were most affected in bed-rest.