953 resultados para low-temperature heat capacity
Resumo:
The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1–2.3 km depth, corresponding to 10–70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km−1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth–luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40–70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma−1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.
Resumo:
Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.
Resumo:
With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2)×U(1) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ∼5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5±1.5 GeV. Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.
Resumo:
Compromised skin integrity of farmed Atlantic salmon, commonly occurring under low temperature and stressful conditions, has major impacts on animal welfare and economic productivity. Even fish with minimal scale loss and minor wounds can suffer from secondary infections, causing downgrading and mortalities. Wound healing is a complex process, where water temperature and nutrition play key roles. In this study, Atlantic salmon (260 g) were held at different water temperatures (4 or 12 °C) and fed three different diets for 10 weeks, before artificial wounds were inflicted and the wound healing process monitored for 2 weeks. The fish were fed either a control diet, a diet supplemented with zinc (Zn) or a diet containing a combination of functional ingredients in addition to Zn. The effect of diet was assessed through subjective and quantitative skin histology and the transcription of skin-associated chemokines. Histology confirmed that wound healing was faster at 12 °C. The epidermis was more organised, and image analyses of digitised skin slides showed that fish fed diets with added Zn had a significantly larger area of the epidermis covered by mucous cells in the deeper layers after 2 weeks, representing more advanced healing progression. Constitutive levels of the newly described chemokines, herein named CK 11A, B and C, confirmed their preferential expression in skin compared to other tissues. Contrasting modulation profiles at 4 and 12 °C were seen for all three chemokines during the wound healing time course, while the Zn-supplemented diets significantly increased the expression of CK 11A and B during the first 24 h of the healing phase.
Resumo:
The combined effects of salinity, temperature and cadmium stress on survival and adaptation through cadmium-binding protein (CdBP) accumulation were studied in the grass shrimp, Palaemonetes pugio. In 96-hour bioassays, shrimp were exposed to zero or one of three levels of cadmium, under one of six different salinity (15, 25, or 35$\perthous$) and temperature (20 or 30$\sp\circ$C) regimes. CdBP concentrations were quantified in survivors from the 24 exposure groups. Salinity and temperature did not affect survivorship unless the shrimp were also exposed to cadmium. Grass shrimp were most sensitive to cadmium at low salinity-high temperature, and least sensitive at high salinity-low temperature. The incidence of cadmium-associated black lesions in gill tissue was influenced by salinity and temperature stress. P. pugio produced a 10,000 dalton metallothionein-like CdBP when exposed to at least 0.1 mg Cd$\sp{2+}$/L for 96 hours. Accumulation of CdBP was increased with increases in the exposure cadmium level, increases in temperature and decreases in salinity, independently and in conjunction with one another. Maximum CdBP concentrations occurred in grass shrimp that survived the salinity-temperature-cadmium conditions creating maximum stress as measured by highest mortality, not necessarily in shrimp exposed to the highest cadmium levels. The potential utility of this method as a monitor of physiological stress in estuarine biota inhabiting metal-polluted environments is discussed. ^
Resumo:
High tunnels have been successfully used in Iowa to modify the climate and extend the growing season for tomatoes and other crops. Without the use of supplemental heat these ventilated, single layered plastic structures have typically increased average inside air temperatures by 10°F or more over outside temperatures for the growing season. The same tunnel, however, will only increase the daily low temperature by about 1 or 2°F, thus making early season high tunnel plantings without additional heat or plant coverings risky in Iowa. Fabric row covers are commonly used in high tunnels to provide for an additional 2-4°F frost protection during cold evenings. The recommended planting date for high tunnel tomatoes in Iowa has been about April 16 (4 to 5 weeks ahead of the recommended outside planting date). Producers are also advised to have some sort of plant covering material available to protect plants during a late spring frost.
Resumo:
Subpolar regions are key areas to study natural climate variability, due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37, TEX86 and LDI) on their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long chain alkyl diols were below detection limit in most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes i.e. high fluxes of alkenones and GDGTs were measured during late spring-summer, and high fluxes of long chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3°C for UK'37) and positive (up to 5°C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86 derived temperatures correspond with both annual and winter mean 0-200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments, and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols, suggest that Proboscia diatoms are the major sources of long chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.
Resumo:
Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.
Resumo:
Four models of fission track annealing in apatite are compared with measured fission track lengths in samples from Site 800 in the East Mariana Basin, Ocean Drilling Program Leg 129, given an independently determined temperature history. The temperature history of Site 800 was calculated using a one-dimensional, compactive, conductive heat flow model assuming two end-member thermal cases: one for cooling of Jurassic ocean crust that has experienced no subsequent heating, and one for cooling of Cretaceous ocean crust. Because the samples analyzed were only shallowly buried and because the tectonic history of the area since sample deposition is simple, resolution of the temperature history is high. The maximum temperature experienced by the sampled bed is between 16°-21°C and occurs at 96 Ma; temperatures since the Cretaceous have dropped in spite of continued pelagic sediment deposition because heat flow has continued to decay exponentially and bottom-water temperatures have dropped. Fission tracks observed within apatite grains from the sampled bed are 14.6 +/- 0.1 µm (1 sigma) long. Given the proposed temperature history of the samples, one unpublished and three published models of fission track annealing predict mean track lengths from 14.8 to 15.9 µm. These models require temperatures as much as 40°C higher than the calculated paleotemperature maximum of the sampled bed to produce the same degree of track annealing. Measured and predicted values are different because annealing models are based on extrapolation of high temperature laboratory data to geologic times. The model that makes the closest prediction is based on the greatest number of experiments performed at low temperature and on an apatite having composition closest to that of the core samples.
Resumo:
Leg 83 of the Deep Sea Drilling Project has deepened Hole 504B to over 1 km into basement, 1350 m below the seafloor (BSF). The hole previously extended through 274.5 m of sediment and 561.5 m of pillow basalts altered at low temperature (< 100°C), to 836 m BSF. Leg 83 drilling penetrated an additional 10 m of pillows, a 209-m transition zone, and 295 m into a sheeted dike complex. Leg 83 basalts (836-1350 m BSF) generally contain superimposed greenschist and zeolite-facies mineral parageneses. Alteration of pillows and dikes from 836 to 898 m BSF occurred under reducing conditions at low water/rock ratios, and at temperatures probably greater than 100°C. Evolution of fluid composition resulted in the formation of (1) clay minerals, followed by (2) zeolites, anhydrite, and calcite. Alteration of basalts in the transition zone and dike sections (898-1350 m BSF) occurred in three basic stages, defined by the opening of fractures and the formation of characteristic secondary minerals. (1) Chlorite, actinolite, pyrite, albite, sphene, and minor quartz formed in veins and host basalts from partially reacted seawater (Mg-bearing, locally metal-and Si-enriched) at temperatures of at least 200-250°C. (2) Quartz, epidote, and sulfides formed in veins at temperatures of up to 380°C, from more evolved (Mg-depleted, metal-, Si-, and 18O-enriched) fluids. (3) The last stage is characterized by zeolite formation: (a) analcite and stilbite formed locally, possibly at temperatures less than 200°C followed by (b) formation of laumontite, heulàndite, scolecite, calcite, and prehnite from solutions depleted in Mg and enriched in Ca and 18O, at temperatures of up to 250°C. The presence of small amounts of anhydrite locally may be due to ingress of relatively unaltered seawater into the system during Stage 3. Alteration was controlled by the permeability of the crust and is characterized by generally incomplete recrystallization and replacement reactions among secondary minerals. Secondary mineralogy in the host basalts is strongly controlled by primary mineralogy. The alteration of Leg 83 basalts can be interpreted in terms of an evolving hydrothermal system, with (a) changes in solution composition because of reaction of seawater fluids with basalts at high temperatures; (b) variations in permeability caused by several stages of sealing and reopening of cracks; and (c) a general cooling of the system, caused either by the cooling of a magma chamber beneath the spreading center and/or the movement of the crust away from the heat source. The relationship of the high-temperature alteration in the transition zone and dike sections to the low-temperature alteration in the overlying pillow section remains uncertain.
Resumo:
Cores from Deep Sea Drilling Project Holes 501, 504B and 505B have an unusual near-vein zonation in basalts. Megascopically, zonation occurs as differently colored strips and zones whose typical thickness does not exceed 6 to 7 cm. Microscopically, the color of zones depends on variably colored clay minerals which are the products of low-temperature hydrothermal alteration in basalt. These differently colored zones form the so called "oxidative" type of alteration of basalts. Another "background," or, less precisely termed, "non-oxidative," type of alteration in basalts is characterized by large-scale, homogeneous replacement of olivine, and filling of vesicles and cracks by an olive-brown or olive-green clay mineral. The compositions of clay minerals of the "background" type of alteration, as well as the composition of co-existing titanomagnetites, were determined with an electron microprobe. There are sharp maxima in potassium and iron content, and minima in alumina, silica, and magnesia in clay minerals in the colored zones near veins. Coloring of clay and rock-forming minerals by iron hydroxides and a decrease of the amount of titanomagnetite, which apparently was the source of redeposited iron, occur frequently in colored zones. We assume that the large-scale "background" alteration in the basalts occurred under the effect of pore waters slowly penetrating through bottom sediments. Faulting can facilitate access of fresh sea water to basalts; thus above the general homogeneous background arise zones of "oxidative" alteration along fractures in basalts. The main factors controlling these processes are time (age of basalt), grain size, temperature, thickness of sedimentary cover, and heat flow.
Resumo:
The mineralogy and chemistry of altered basalts and the stable isotopic compositions of secondary vein carbonates were studied in cores from Ocean Drilling Program Hole 843B, located in 95-Ma crust of the Hawaiian Arch. Millimeter- to centimeter-sized dark alteration halos around veins are 5%-15% altered to celadonite and Fe-oxyhydroxides, plus minor saponite and calcite. Adjacent gray host rocks are about 15% altered to saponite and calcite. The dark halos are enriched in H2O+, CO2, FeT, K2O, MnO, and Fe3+/FeT and depleted in SiO2, Al2O3, MgO, and TiO2 relative to gray host rocks. Brown alteration halos occur around veins where veins are more abundant, and are similar to dark halos, but contain more Fe-oxyhydroxides and exhibit greater Fe2O3T contents and higher Fe3+/FeT. Stable isotopic compositions of vein carbonates are consistent with their precipitation from seawater at temperatures of 5°-40°C. Crosscutting relationships of veins and zoned vein and vesicle fillings reveal a sequence of secondary mineral formation and alteration conditions. Celadonite and Fe-oxyhydroxides formed and dark alteration halos developed relatively early, under oxidizing conditions at low temperatures (<50°C). Saponite formed later at lower seawater/rock ratios and under more reducing conditions. Calcite and pyrite formed last in veins and vesicles from more evolved, seawaterderived fluids at temperatures of 5°-40°C. A second stage of celadonite, with compositions distinct from the early celadonite, also occurred relatively late (within the "calcite stage"), and may be related to refracturing of the crust and introduction of less-evolved seawater solutions into the rocks. Trends to higher K2O contents are attributed to alteration, but high K/Ti, Ba, and Zr contents indicate the presence of enriched or transitional MORB. CO2 contents of Pacific ODP cores exhibit a general increase with age suggesting progressive fixation of CO2 as calcite in the crust, but this could be complicated by local heterogeneities in fracturing and calcite formation in the crust.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.