1000 resultados para lanthanide(III)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

从技术路线、原料控制和设备设施等方面对肝素钠无蛋白品和精品的生产进行了论述,并就如何提高品质收率和目前存在的一些问题进行探讨。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate electronic structures of the technologically important lanthanide/rare-earth sesquioxides (Ln2O3, with Ln=La, ⋯,Lu) and CeO2 have been calculated using hybrid density functionals HSE03, HSE06, and screened exchange (sX-LDA). We find that these density functional methods describe the strongly correlated Ln f electrons as well as the recent G0W0@LDA+U results, generally yielding the correct band gaps and trends across the Ln period. For HSE, the band gap between O 2p states and lanthanide 5d states is nearly independent of the lanthanide, while the minimum gap varies as filled or empty Ln 4f states come into this gap. sX-LDA predicts the unoccupied 4f levels at higher energies, which leads to a better agreement with experiments for Sm2O 3, Eu2O3, and Yb2O3. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

作者采用行为学方法测定了伏击型凶猛鱼类鳜鱼视觉对猎物运动和形状特征的反应特性。鳜鱼对3种不同体形饵料鱼有最强的跟踪反应和攻击反应,对虾则有较强的跟踪反应而几乎没有攻击反应,对蜻蜒幼虫仅有不强的跟踪反应而完全没有攻击反应。它对低速(v≤5cm/s)一连续和等间歇不连续运动的饵料鱼有较强的跟踪反应和攻击反应,对中速和高速(v≥10cm/s)连续运动的饵料鱼有最强的跟踪反应而几乎没有或完全没有攻击反应,对中速和高速等间歇不连续运动的饵料鱼则有最强的跟踪反应和最强的攻击反应。它对不连续运动的a、b、c、d、e、f

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the crystallographic phase purity of III-V nanowires is notoriously difficult, yet this is essential for future nanowire devices. Reported methods for controlling nanowire phase require dopant addition, or a restricted choice of nanowire diameter, and only rarely yield a pure phase. Here we demonstrate that phase-perfect nanowires, of arbitrary diameter, can be achieved simply by tailoring basic growth parameters: temperature and V/III ratio. Phase purity is achieved without sacrificing important specifications of diameter and dopant levels. Pure zinc blende nanowires, free of twin defects, were achieved using a low growth temperature coupled with a high V/III ratio. Conversely, a high growth temperature coupled with a low V/III ratio produced pure wurtzite nanowires free of stacking faults. We present a comprehensive nucleation model to explain the formation of these markedly different crystal phases under these growth conditions. Critical to achieving phase purity are changes in surface energy of the nanowire side facets, which in turn are controlled by the basic growth parameters of temperature and V/III ratio. This ability to tune crystal structure between twin-free zinc blende and stacking-fault-free wurtzite not only will enhance the performance of nanowire devices but also opens new possibilities for engineering nanowire devices, without restrictions on nanowire diameters or doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of Au-catalyzed InP nanowires (NWs) by metalorganic chemical vapor deposition (MOCVD) has been studied in the temperature range of 400-510 °C and V/III ratio of 44-700. We demonstrate that minimal tapering of InP NWs can be achieved at 400 °C and V/III ratio of 350. Zinc-blende (ZB) or wurtzite (WZ) NWs is obtained depending on the growth conditions. 4K microphotoluminescence (μ-PL) studies show that emission energy is blue-shifted as growth temperature increases. By changing these growth parameters, one can tune the emission wavelength of InP NWs which is attractive for applications in developing novel optoelectronic devices. © 2010 IEEE.