736 resultados para ionic liquids
Resumo:
The density of ionic liquids (ILs) as a function of pressure and temperature has been modeled using a group contribution model. This model extends the calculations previously reported (Jacquemin et al. J. Chem. Eng. Data 2008) which used 4000 IL densities at 298.15 K and 600 IL densities as a function of temperature up to 423 K at 0.1 MPa to pressures up to 207 MPa by using described data in the literature and presented in this study. The densities of two different ionic liquids (butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N][NTf], and 1-butyl-l-methyl-pyrrolidiniumbis(trifluoromethylsulfonyl)imide, [C mPyrro]-[NTf]) were measured as a function of temperature from (293 to 415) K and over an extended pressure range from (0.1 to 40) MPa using a vibrating-tube densimeter. The model is able to predict the ionic liquid densities of over 5080 experimental data points to within 0.36%. In addition, this methodology allows the calculation of the mechanical coefficients using the calculated density as a function of temperature and pressure with an estimated uncertainty of ± 20%. © 2008 American Chemical Society.
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
It is often believed that both ionic liquids and surfactants generally behave as non-specific denaturants of proteins. In this paper, it is shown that amphiphilic ionic liquids bearing a long alkyl chain and a target molecule, where the target molecule is appended via a carboxylic ester functionality, can represent super-substrates that enable the catalytic activity of an enzyme, even at high concentrations in solution. Menthol has been chosen as the target molecule for slow and controlled fragrance delivery, and it was found that the rate of the menthol release can be controlled by the chemical structure of the ionic liquid. At a more fundamental level, this study offers an insight into the complex hydrophobic, electrostatic, and hydrogen bond interactions between the enzyme and substrate.
Resumo:
Diol reactivity can be manipulated in ionic liquids to selectively give chlorinated or cyclic sulfite/sulfate products depending on the ionic liquid used and the presence or absence of base. In comparison with reactions in dichloromethane, the ionic liquid mediated reactions show greatly improved yields and product stability.
Resumo:
The combination of ionic liquids (ILs) and supercritical CO2 (scCO2) allows efficient catalytic processes to be developed. Catalyst separation is generally a major challenge when enzymes or homogeneous organometallic catalysts are utilised for reactions, and IL–scCO2 systems address these separation problems, facilitating the recycling or continual use of the catalyst. Typically these systems involve a catalyst being dissolved in an IL and this is where it remains during the process, with scCO2 extracting the products from the IL (catalyst) phase. ILs and many catalysts are not soluble in scCO2 and this facilitates the clean separation of products from the catalyst and IL. When the pressure is reduced in a collection chamber, the scCO2 returns to CO2 gas and products can be obtained without contamination of catalyst or solvents. It is possible to operate IL–scCO2 systems in a continuous flow manner and this further improves the efficiency and industrial potential of these systems. This chapter will introduce the fundamental properties of these multiphase catalytic systems. It will also highlight key examples of catalytic processes from the academic literature which illustrate the benefits of utilising this combination of solvents for catalysis
Resumo:
A series of ionic liquids based on Girard's reagents was synthesised. Their tunable thermomorphic behaviour with water was demonstrated, and slight modifications in the cationic structure led to drastic changes in their water miscibility. Their phase behaviour, involving monophasic–biphasic transitions, drove a number of practical applications, including scavenging water-soluble dyes and the extraction of metals from water.
Resumo:
Efficient scrubbing of mercury vapour from natural gas streams has been demonstrated both in the laboratory and on an industrial scale, using chlorocuprate(ii) ionic liquids impregnated on high surface area porous solid supports, resulting in the effective removal of mercury vapour from natural gas streams. This material has been commercialised for use within the petroleum gas production industry, and has currently been running continuously for three years on a natural gas plant in Malaysia. Here we report on the chemistry underlying this process, and demonstrate the transfer of this technology from gram to ton scale.
Resumo:
Herein, the N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide and the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide room temperature ionic liquids, combined with the lithium bis(trifluoromethanesulfonyl)amide salt, are investigated as electrolytes for Li/LiNi1/3Mn1/3Co1/3O2 (Li/NMC) batteries. To conduct this study, volumetric properties, ionic conductivity and viscosity of the pure ionic liquids and selected electrolytes were firstly determined as a function of temperature and composition in solution. These data were then compared with those measured in the case of the standard alkyl carbonate-based electrolyte: e.g. the EC/PC/3DMC + 1 mol·L−1 LiPF6. The compatibility of the selected electrolytes with the lithium electrode was then investigated by following the evolution of Li/electrolyte interfaces through impedance measurements. Interestingly, the impedances of the investigated Li/electrolyte interfaces were found to be more than three times lower than that measured using the standard electrolyte. Finally, electrochemical performances of the ionic liquid-based electrolytes were investigated using galvanostatic charge and discharge and cyclic voltammetry of each Li/NMC cell. Using these electrolytes, each tested Li cell reaches up to 145 mA·h·g−1 at C/10 and 110 mA·h·g−1 at C with a coulombic efficiency close to 100 %.
Resumo:
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent [gamma] = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent [gamma] reported herein along with literature data for other ionic liquids, it appears that [gamma] decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent [gamma] may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
Resumo:
Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of ILs [C n-mim][NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the physical and thermodynamic properties are highly non-linear or too complex. © 2012 Copyright the authors.
Resumo:
A new low-energy pathway is reported for the electrochemical reduction of CO2 to formate and syngas at low overpotentials, utilizing a reactive ionic liquid as the solvent. The superbasic tetraalkyl phosphonium ionic liquid [P66614][124Triz] is able to chemisorb CO2 through equimolar binding of CO2 with the 1,2,4-triazole anion. This chemisorbed CO2 can be reduced at silver electrodes at overpotentials as low as 0.17 V, forming formate. In contrast, physically absorbed CO2 within the same ionic liquid or in ionic liquids where chemisorption is impossible (such as [P66614][NTf2]) undergoes reduction at significantly increased overpotentials, producing only CO as the product.
Resumo:
Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. Ionic liquid gels provide the ability to build functionality at every level, the solid component, the ionic liquid, and any incorporated active functional agents. This allows materials to be custom designed for a vast assortment of applications. This diverse class of materials has the potential to yield functional materials for green and sustainable chemistry, energy, electronics, medicine, food, cosmetics, and more. The discussion of the development of ionic liquid gel materials for applications in green and sustainable chemistry centres on uses of ionic liquid gels in catalysis and energy.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.
Resumo:
Heterogeneous dynamics within a time range of nanoseconds was investigated by molecular dynamics (MD) simulations of 1 -butyl-3-methylimidazolium chloride ([bmim]Cl). After identifying groups of fast and slow ions, it was shown that the separation between the location of the center of mass and the center of charge of cations, d(CMCC), is a signature of such difference in ionic mobility. The distance d(CMCC) can be used as a signature because it relaxes in the time window of the dynamical heterogeneity. The relationship between the parameter dcmcc and conformations of the side alkyl chain in [bmim] is discussed. Since the relatively slow relaxation of dcmcc is a consequence of coexisting polar and nonpolar domains in the bulk, the MD simulations reveal a subtle interplay between structural and dynamical heterogeneity in ionic liquids.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.