848 resultados para ion trapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-6Al-4V alloy is one of the most frequently used Ti alloys with diverse applications in aerospace and biomedical areas due to its favorable mechanical properties, corrosion resistance and biocompatibility. Meanwhile, its surface can stiffer intense corrosion caused by wear processes due to its poor tribological properties. Thus in the present study, PIII processing of Ti-6Al-4V alloy was carried out to evaluate its corrosion resistance in 3.5% NaCl solution. Two different sets of Ti-6Al-4V samples were PIII treated, varying the plasma gases and the treatment time. The corrosion behavior is correlated with the surface morphology, and the nitrogen content. SEM micrographs of the untreated sample reveal a typical two-phase structure. PIII processing promotes surface sputtering and the surface morphology is completely different for samples treated with N-2/H-2 mixture and N-2 only. The highest penetration of nitrogen (similar to 88 nm), corresponding to 33% of N-2 was obtained for the sample treated with N-2/H-2 mixture for 1:30 h. The corrosion behavior of the samples was investigated by a potentiodynamic polarization method. A large passive region of the polarization curves (similar to 1.5 V), associated with the formation of a protective film, was observed for all samples. The passive current density (similar to 3 x 10(-6) A cm(-2)) of the PIII-treated Ti-6Al-4V samples is about 10 times higher than for the untreated sample. This current value is still rather low and maintains good corrosion resistance. The anodic branches of the polarization curves for all treated Ti-6Al-4V samples demonstrate also that the oxide films break down at approximately 1.6 V, forming an active region. Although the sample treated by N-2/H-2 mixture for 1.30 It has thicker nitrogen enriched layer, better corrosion resistance is obtained for the PIII process performed with N, gas only. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfaces of silicon wafers implanted with N and C, respectively, and aluminum 5052 implanted with N alone by plasma immersion ion implantation WHO were probed by a nanoindentor and analyzed by the contact-angle method to provide information on surface nanohardness and wettability. Silicon nitride and silicon carbide are important ceramic materials for microelectronics, especially for high-temperature applications. These compounds can be synthesized by high-dose ion implantation. The nanohardness of a silicon sample implanted with 12-keV nitrogen PIII (with 3 X 10(17) cm(-2) dose) increased by 10% compared to the unimplanted sample, in layers deeper than the regions where the formation of the Si,N, compound occurred. A factor of 2.5 increase in hardness was obtained for C-implanted Si wafer at 35 keV (with 6 X 10(17) cm(-2) dose), again deeper than the SiC-rich layer, Both compounds are in the amorphous state and their hardness is much lower than that of the crystalline compounds, which require an annealing process after ion implantation. In the same targets, the contact angle increased by 65% and 35% for N- and C-implanted samples, respectively. Compared to the Si target, the nitrogen PIII-irradiated Al 5052 (wish 15 keV) showed negligible change in its hydrophobic character after ion implantation. Its near-surface nanohardness measurement showed a slight increase for doses of 1 X 10(17) cm(-2). We have been searching for an AlN layer of the order of 1000 A thick, using such a low-energy PIII process, but oxide formation during processing has precluded its synthesis. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, it was used a plasma system composed of a cylindrical stainless steel reactor, a radio-frequency (13.56MHz) power source fixed at either 25 W or 70 W, a power source with a negative bias of 10kV and a 100Hz pulse. The system worked at an operational pressure of 80mTorr which consisted of varying concentrations of the monomer HMDSN and gaseous nitrogen in ratios: HMDSN (mTorr)/nitrogen (mTorr) from 70/10 to 20/60 in terms of operational pressure. The structural characterization of the films was done by FTIR spectroscopy. Absorptions were observed between 3500 cm(-1) to 3200 cm(-1), 3000 cm(-1) to 2900 cm(-1), 2500 cm(-1) to 2000 cm(-1), 1500 cm(-1) to 700 cm(-1), corresponding, respectively, to OH radicals, C-H stretching bonds in CH2 and CH3 molecules, C-N bonds, and finally, strain C-H bonds, Si-CH3 and Si-N groups, for both the 70 W and the 25 W. The contact angle for water was approximately 100 degrees and the surface energy is near 25mJ/m(2) which represents a hydrophobic surface, measured by goniometric method. The aging of the film was also analyzed by measuring the contact angle over a period of time. The stabilization was observed after 4 weeks. The refractive index of these materials presents values from 1.73 to 1.65 measured by ultraviolet-visible technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm(-1), 2960 cm(-1), 1650 cm(-1), 1250 cm(-1) and 1050 cm(-1) were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work involved the development and application of a new analytical procedure for in-situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory. The in-situ application involved immersing the DM-Cell-PAB system in two different rivers, enabling us to study the relative lability of metal species (Cu, Cd, Fe, Mn, and Ni) as a function of time and quantity of exchanger. The procedure is simple and opens up a new perspective for understanding environmental phenomena relating to the complexation, transport, stability, and lability of metal species in aquatic systems rich in organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The release and diffusion of hydroxyl ions (OH-) of calcium hydroxide (Ca(OH)2)-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)2/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37 degrees C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukeys tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)2-based medications tested release hydroxyl ion that can diffuse through the dentin.